Suppr超能文献

增强型YOLOv5:一种高效的道路目标检测方法。

Enhanced YOLOv5: An Efficient Road Object Detection Method.

作者信息

Chen Hao, Chen Zhan, Yu Hang

机构信息

School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China.

出版信息

Sensors (Basel). 2023 Oct 10;23(20):8355. doi: 10.3390/s23208355.

Abstract

Accurate identification of road objects is crucial for achieving intelligent traffic systems. However, developing efficient and accurate road object detection methods in complex traffic scenarios has always been a challenging task. The objective of this study was to improve the target detection algorithm for road object detection by enhancing the algorithm's capability to fuse features of different scales and levels, thereby improving the accurate identification of objects in complex road scenes. We propose an improved method called the Enhanced YOLOv5 algorithm for road object detection. By introducing the Bidirectional Feature Pyramid Network (BiFPN) into the YOLOv5 algorithm, we address the challenges of multi-scale and multi-level feature fusion and enhance the detection capability for objects of different sizes. Additionally, we integrate the Convolutional Block Attention Module (CBAM) into the existing YOLOv5 model to enhance its feature representation capability. Furthermore, we employ a new non-maximum suppression technique called Distance Intersection Over Union (DIOU) to effectively address issues such as misjudgment and duplicate detection when significant overlap occurs between bounding boxes. We use mean Average Precision (mAP) and Precision (P) as evaluation metrics. Finally, experimental results on the BDD100K dataset demonstrate that the improved YOLOv5 algorithm achieves a 1.6% increase in object detection mAP, while the P value increases by 5.3%, effectively improving the accuracy and robustness of road object recognition.

摘要

准确识别道路物体对于实现智能交通系统至关重要。然而,在复杂交通场景中开发高效且准确的道路物体检测方法一直是一项具有挑战性的任务。本研究的目的是通过增强算法融合不同尺度和层次特征的能力来改进用于道路物体检测的目标检测算法,从而提高在复杂道路场景中物体的准确识别率。我们提出了一种用于道路物体检测的改进方法,称为增强型YOLOv5算法。通过将双向特征金字塔网络(BiFPN)引入YOLOv5算法,我们解决了多尺度和多层次特征融合的挑战,并增强了对不同大小物体的检测能力。此外,我们将卷积块注意力模块(CBAM)集成到现有的YOLOv5模型中,以增强其特征表示能力。此外,我们采用了一种名为距离交并比(DIOU)的新非极大值抑制技术,以有效解决当边界框之间出现显著重叠时的误判和重复检测等问题。我们使用平均精度均值(mAP)和精度(P)作为评估指标。最后,在BDD100K数据集上的实验结果表明,改进后的YOLOv5算法在物体检测mAP上提高了1.6%,而P值提高了5.3%,有效提高了道路物体识别的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a32f/10611198/bb6eb2be68f2/sensors-23-08355-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验