Pisk Jana, Vrdoljak Višnja, Mandarić Mirna, Hrenar Tomica, Agustin Dominique, Rubčić Mirta
University of Zagreb, Faculty of Science, Department of Chemistry Horvatovac 102a 10000 Zagreb Croatia
LCC-CNRS (Laboratoire de Chimie de Coordination), 205 Route de Narbonne BP44099, CEDEX 4 31077 Toulouse France.
RSC Adv. 2024 Jun 13;14(27):19029-19040. doi: 10.1039/d4ra03563a. eCollection 2024 Jun 12.
The assembly of MoO and methoxy-substituted salicylaldehyde nicotinoyl hydrazone ligands afforded two classes of hybrid polyoxometalates (POMs). In the Class I architectures, [MoO(HL)(D)][MoO]·CHCOCH (D = CHCOCH or HO, = 0 or 2, and L = ligands bearing the OMe group at position 3, 4 and 5, respectively), the main driving force for self-assembly is the electrostatic interaction between the components. Class II architectures are composed of a POM anion covalently linked to two Mo-complex units through the terminal O or bridging μ-O oxygen atoms, as found in Lindqvist-based hybrids [{MoO(HL)}MoO]·CHCN ( = 0 or 2) and the asymmetrical β-octamolybdate-based hybrid [{MoO(HL)(HL)}{MoO(HL)}MoO]·CHCN·HO. Quantum chemical calculations were applied to evaluate the impact of the POM hybrid constituents on the hybrid-type stability, showing that it strongly depends on the ligand substituent position and ancillary ligand nature. Hybrids were tested as catalysts for cyclooctene epoxidation using -butyl hydroperoxide (TBHP in water or decane) and with or without the addition of acetonitrile (CHCN) as an organic solvent. The catalytic results provided by the use of TBHP in decane are the best ones and classify all the prepared catalysts as very active, with the conversion of cyclooctene >90%, and high selectivity towards epoxide, >80%. We also examined the influence of the ligand structure, POM's hybrid type, and coordination mode on the Mo-hybrid activity and selectivity.
钼酸盐与甲氧基取代的水杨醛烟酰腙配体的组装产生了两类杂化多金属氧酸盐(POMs)。在I类结构中,[MoO(HL)(D)][MoO]·CHCOCH(D = CHCOCH或HO, = 0或2,且L = 分别在3、4和5位带有甲氧基的配体),自组装的主要驱动力是各组分之间的静电相互作用。II类结构由一个通过末端O或桥连μ - O氧原子与两个钼络合物单元共价连接的POM阴离子组成,如在基于Lindqvist的杂化物[{MoO(HL)}MoO]·CHCN( = 0或2)和基于不对称β - 八钼酸盐的杂化物[{MoO(HL)(HL)}{MoO(HL)}MoO]·CHCN·HO中发现的那样。应用量子化学计算来评估POM杂化物成分对杂化类型稳定性的影响,结果表明其强烈依赖于配体取代基位置和辅助配体性质。使用叔丁基过氧化氢(水中或癸烷中的TBHP),并在有或没有添加乙腈(CHCN)作为有机溶剂的情况下,对杂化物作为环辛烯环氧化催化剂进行了测试。在癸烷中使用TBHP得到的催化结果是最好的,所有制备的催化剂都被归类为非常活跃,环辛烯转化率>90%,对环氧化物的选择性>80%。我们还研究了配体结构、POM的杂化类型和配位模式对钼杂化物活性和选择性的影响。