Li Haoyuan, Pu Yujuan, Li Wenhao, Yan Zitong, Deng Ruojing, Shi Fanyue, Zhao Chenhao, Zhang Youkui, Duan Tao
State Key Laboratory of Environment-Friendly Energy Materials, School of Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Small. 2024 Oct;20(42):e2403311. doi: 10.1002/smll.202403311. Epub 2024 Jun 14.
Developing a highly efficient catalyst for electrocatalytic urea oxidation reaction (UOR) is not only beneficial for the degradation of urea pollutants in wastewater but also provides a benign route for hydrogen production. Herein, a sulfur-vacancy (S) engineering is proposed to accelerate the formation of metal (oxy)hydroxide on the surface of Ni-Co bimetal sulfide nanosheet arrays on nickel foam (S-CoNiS@NF) for boosting the urea oxidation electrocatalysis. As a result, the obtained S-CoNiS@NF demonstrates an outstanding electrocatalytic UOR performance, which requires a low potential of only 1.397 V versus the reversible hydrogen electrode to achieve the current density of 100 mA cm. The ex situ Raman spectra and density functional theory calculations reveal the key roles of the S site and CoS in promoting the electrocatalytic UOR performance. This work provides a new strategy for accelerating the transformation of electrocatalysts to active metallic (oxy)hydroxide for urea electrolysis via engineering the surface vacancies.
开发一种用于电催化尿素氧化反应(UOR)的高效催化剂,不仅有利于废水中尿素污染物的降解,还为制氢提供了一条良性途径。在此,提出了一种硫空位(S)工程,以加速在泡沫镍上的镍-钴双金属硫化物纳米片阵列(S-CoNiS@NF)表面形成金属(氧)氢氧化物,从而促进尿素氧化电催化。结果,所制备的S-CoNiS@NF表现出优异的电催化UOR性能,相对于可逆氢电极,仅需1.397 V的低电位即可实现100 mA cm的电流密度。非原位拉曼光谱和密度泛函理论计算揭示了S位点和CoS在促进电催化UOR性能方面的关键作用。这项工作通过设计表面空位,为加速电催化剂向活性金属(氧)氢氧化物转变以用于尿素电解提供了一种新策略。