Suppr超能文献

体内三维重建小鼠主动脉心脏瓣膜。

In Vivo Three-Dimensional Geometric Reconstruction of the Mouse Aortic Heart Valve.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.

Department of Pediatrics, Medical College of Wisconsin, Herma Heart Institute, Children's Wisconsin Milwaukee, Milwaukee, WI, USA.

出版信息

Ann Biomed Eng. 2024 Sep;52(9):2596-2609. doi: 10.1007/s10439-024-03555-4. Epub 2024 Jun 14.

Abstract

Aortic valve (AV) disease is a common valvular lesion in the United States, present in about 5% of the population at age 65 with increasing prevalence with advancing age. While current replacement heart valves have extended life for many, their long-term use remains hampered by limited durability. Non-surgical treatments for AV disease do not yet exist, in large part because our understanding of AV disease etiology remains incomplete. The direct study of human AV disease remains hampered by the fact that clinical data is only available at the time of treatment, where the disease is at or near end stage and any time progression information has been lost. Large animal models, long used to assess replacement AV devices, cannot yet reproduce AV disease processes. As an important alternative mouse animal models are attractive for their ability to perform genetic studies of the AV disease processes and test potential pharmaceutical treatments. While mouse models have been used for cellular and genetic studies of AV disease, their small size and fast heart rates have hindered their use for tissue- and organ-level studies. We have recently developed a novel ex vivo micro-CT-based methodology to 3D reconstruct murine heart valves and estimate the leaflet mechanical behaviors (Feng et al. in Sci Rep 13(1):12852, 2023). In the present study, we extended our approach to 3D reconstruction of the in vivo functional murine AV (mAV) geometry using high-frequency four-dimensional ultrasound (4DUS). From the resulting 4DUS images we digitized the mAV mid-surface coordinates in the fully closed and fully opened states. We then utilized matched high-resolution µCT images of ex vivo mouse mAV to develop mAV NURBS-based geometric model. We then fitted the mAV geometric model to the in vivo data to reconstruct the 3D in vivo mAV geometry in the closed and open states in n = 3 mAV. Results demonstrated high fidelity geometric results. To our knowledge, this is the first time such reconstruction was ever achieved. This robust assessment of in vivo mAV leaflet kinematics in 3D opens up the possibility for longitudinal characterization of murine models that develop aortic valve disease.

摘要

主动脉瓣(AV)疾病是美国常见的瓣膜病变,65 岁时约 5%的人群存在该病,且随着年龄的增长患病率逐渐增加。虽然目前的心脏瓣膜置换术延长了许多人的寿命,但由于其耐久性有限,其长期使用仍然受到限制。AV 疾病的非手术治疗目前尚未出现,很大程度上是因为我们对 AV 疾病病因的理解仍不完整。由于临床数据仅在治疗时可用,而此时疾病已处于终末期或接近终末期,且任何时间进展信息都已丢失,因此直接研究人类 AV 疾病仍然受到阻碍。长期以来,大型动物模型一直被用于评估替代 AV 设备,但它们仍无法再现 AV 疾病过程。作为一种重要的替代方法,小鼠动物模型因其能够对 AV 疾病过程进行遗传研究并测试潜在的药物治疗方法而具有吸引力。虽然小鼠模型已被用于 AV 疾病的细胞和遗传研究,但它们的体型小和心率快,限制了它们在组织和器官水平研究中的应用。我们最近开发了一种新颖的基于体外微 CT 的方法,可对小鼠心脏瓣膜进行 3D 重建,并估计瓣叶的机械性能(Feng 等人,《Scientific Reports》13(1):12852,2023)。在本研究中,我们扩展了我们的方法,使用高频四维超声(4DUS)对体内功能正常的小鼠 AV(mAV)几何结构进行 3D 重建。从得到的 4DUS 图像中,我们数字化了完全关闭和完全打开状态下的 mAV 中表面坐标。然后,我们利用匹配的离体小鼠 mAV 的高分辨率 µCT 图像,开发了 mAV 的 NURBS 几何模型。然后,我们将 mAV 几何模型拟合到体内数据中,以重建 n = 3 个 mAV 的关闭和打开状态下的 3D 体内 mAV 几何结构。结果表明,该方法具有很高的几何保真度。据我们所知,这是首次实现这种重建。这种对 3D 体内 mAV 瓣叶运动学的稳健评估,为发展主动脉瓣疾病的小鼠模型的纵向特征提供了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验