Suppr超能文献

非均匀相机抖动去模糊中基于惯性测量单元辅助的精确模糊核重新估计

IMU-Assisted Accurate Blur Kernel Re-Estimation in Non-Uniform Camera Shake Deblurring.

作者信息

Rong Jianxiang, Huang Hua, Li Jia

出版信息

IEEE Trans Image Process. 2024;33:3823-3838. doi: 10.1109/TIP.2024.3411819. Epub 2024 Jun 20.

Abstract

Image deblurring for camera shake is a highly regarded problem in the field of computer vision. A promising solution is the patch-wise non-uniform image deblurring algorithms, where a linear transformation model is typically established between different blur kernels to re-estimate poorly estimated blur kernels. However, the linear model struggles to effectively describe the nonlinear transformation relationships between blur kernels. A key observation is that the inertial measurement unit (IMU) provides motion data of the camera, which is helpful in describing the landmarks of the blur kernel. This paper presents a new IMU-assisted method for the re-estimation of poorly estimated blur kernels. This method establishes a nonlinear transformation relationship model between blur kernels of different patches using IMU motion data. Subsequently, an optimization problem is applied to re-estimate poorly estimated blur kernels by incorporating this relationship model with neighboring well-estimated kernels. Experimental results demonstrate that this blur kernel re-estimation method outperforms existing methods.

摘要

针对相机抖动的图像去模糊是计算机视觉领域备受关注的问题。一种有前景的解决方案是逐块非均匀图像去模糊算法,其中通常在不同模糊核之间建立线性变换模型,以重新估计估计不佳的模糊核。然而,线性模型难以有效描述模糊核之间的非线性变换关系。一个关键的观察结果是,惯性测量单元(IMU)提供相机的运动数据,这有助于描述模糊核的特征。本文提出了一种新的IMU辅助方法,用于重新估计估计不佳的模糊核。该方法利用IMU运动数据在不同块的模糊核之间建立非线性变换关系模型。随后,通过将此关系模型与相邻的估计良好的核相结合,应用一个优化问题来重新估计估计不佳的模糊核。实验结果表明,这种模糊核重新估计方法优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验