Department of Psychology, Carnegie Mellon University, Pittsburgh, PA.
Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA.
J Speech Lang Hear Res. 2024 Jul 9;67(7):2333-2342. doi: 10.1044/2024_JSLHR-23-00659. Epub 2024 Jun 14.
This study explored the use of an automated language analysis tool, FLUCALC, for measuring fluency in aphasia. The purpose was to determine whether CLAN's FLUCALC command could produce efficient, objective outcome measures for salient aspects of fluency in aphasia.
The FLUCALC command was used on CHAT transcripts of Cinderella stories from people with aphasia (PWA; = 281) and controls ( = 257) in the AphasiaBank database.
PWA produced significantly fewer total words, fewer words per minute, more pausing, more repetitions, more revisions, and more phonological fragments than controls, with only one exception: The Wernicke's group was similar to the control group in percentage of filled pauses. Individuals with Broca's aphasia had significantly longer inter-utterance pauses and fewer total words than all other aphasia groups. Both the Broca's and conduction aphasia groups had higher percentages of phrase repetitions than the NABW (NotAphasicByWAB) group. The conduction aphasia group also had a higher percentage of phrase revisions than the NABW and the anomic aphasia groups. Principal components analysis revealed two principal components that accounted for around 60% of the variance and related to quantity of output, rate of speech, and quality of output. The Gaussian mixture models showed that the participants clustered in three groups, which corresponded predominantly to the controls, the nonfluent aphasia group, and the remaining aphasia groups (all classically fluent aphasia types).
FLUCALC is an efficient way to measure objective fluency behaviors in language samples in aphasia. Automated analyses of objective fluency behaviors on large samples of adults with and without aphasia can produce measures that can be used by researchers and clinicians to better understand and track salient aspects of fluency in aphasia.
本研究探索了使用自动语言分析工具 FLUCALC 来测量失语症患者的流畅度。目的是确定 CLAN 的 FLUCALC 命令是否可以为失语症流畅度的显著方面生成高效、客观的结果测量。
在 AphasiaBank 数据库中,使用 CHAT 转写的灰姑娘故事对失语症患者(PWA;n=281)和对照组(n=257)的 FLUCALC 命令进行分析。
与对照组相比,PWA 产生的总词汇量显著减少、每分钟词汇量减少、停顿更多、重复更多、修订更多、音韵片段更多,仅有一个例外:Wernicke 组在填充停顿百分比方面与对照组相似。Broca 失语症患者的话语间停顿时间明显长于其他失语症组,总词汇量也明显少于其他组。Broca 失语症和传导性失语症组的短语重复百分比均高于 NABW(非失语症 WAB)组。传导性失语症组的短语修订百分比也高于 NABW 组和命名性失语症组。主成分分析显示,有两个主成分可以解释约 60%的方差,与输出量、语速和输出质量有关。高斯混合模型显示,参与者聚类为三组,主要对应对照组、非流畅性失语症组和剩余的失语症组(所有经典流畅性失语症类型)。
FLUCALC 是一种测量失语症患者语言样本中客观流畅性行为的有效方法。对有和无失语症的大量成人进行客观流畅性行为的自动分析,可以生成可供研究人员和临床医生使用的测量方法,以更好地理解和跟踪失语症流畅性的显著方面。