Suppr超能文献

通过智能泵事件日志的非线性模型分析确定静脉输液持续时间和输液失败的决定因素:回顾性研究

Determinants of Intravenous Infusion Longevity and Infusion Failure via a Nonlinear Model Analysis of Smart Pump Event Logs: Retrospective Study.

作者信息

Kia Arash, Waterson James, Bargary Norma, Rolt Stuart, Burke Kevin, Robertson Jeremy, Garcia Samuel, Benavoli Alessio, Bergström David

机构信息

Department of Mathematics & Statistics, University of Limerick, Limerick, Ireland.

Medical Affairs, Medication Management Solutions, Becton Dickinson, Dubai, United Arab Emirates.

出版信息

JMIR AI. 2023 Sep 13;2:e48628. doi: 10.2196/48628.

Abstract

BACKGROUND

Infusion failure may have severe consequences for patients receiving critical, short-half-life infusions. Continued interruptions to infusions can lead to subtherapeutic therapy.

OBJECTIVE

This study aims to identify and rank determinants of the longevity of continuous infusions administered through syringe drivers, using nonlinear predictive models. Additionally, this study aims to evaluate key factors influencing infusion longevity and develop and test a model for predicting the likelihood of achieving successful infusion longevity.

METHODS

Data were extracted from the event logs of smart pumps containing information on care profiles, medication types and concentrations, occlusion alarm settings, and the final infusion cessation cause. These data were then used to fit 5 nonlinear models and evaluate the best explanatory model.

RESULTS

Random forest was the best-fit predictor, with an F-score of 80.42, compared to 5 other models (mean F-score 75.06; range 67.48-79.63). When applied to infusion data in an individual syringe driver data set, the predictor model found that the final medication concentration and medication type were of less significance to infusion longevity compared to the rate and care unit. For low-rate infusions, rates ranging from 2 to 2.8 mL/hr performed best for achieving a balance between infusion longevity and fluid load per infusion, with an occlusion versus no-occlusion ratio of 0.553. Rates between 0.8 and 1.2 mL/hr exhibited the poorest performance with a ratio of 1.604. Higher rates, up to 4 mL/hr, performed better in terms of occlusion versus no-occlusion ratios.

CONCLUSIONS

This study provides clinicians with insights into the specific types of infusion that warrant more intense observation or proactive management of intravenous access; additionally, it can offer valuable information regarding the average duration of uninterrupted infusions that can be expected in these care areas. Optimizing rate settings to improve infusion longevity for continuous infusions, achieved through compounding to create customized concentrations for individual patients, may be possible in light of the study's outcomes. The study also highlights the potential of machine learning nonlinear models in predicting outcomes and life spans of specific therapies delivered via medical devices.

摘要

背景

输液失败可能会给接受关键的、半衰期短的输注治疗的患者带来严重后果。输液的持续中断可能导致治疗未达有效治疗浓度。

目的

本研究旨在使用非线性预测模型识别并对通过注射器驱动装置进行的连续输注的持续时间的决定因素进行排序。此外,本研究旨在评估影响输液持续时间的关键因素,并开发和测试一个预测成功实现输液持续时间可能性的模型。

方法

从智能泵的事件日志中提取数据,这些数据包含护理概况、药物类型和浓度、堵塞警报设置以及最终输液停止原因等信息。然后使用这些数据拟合5种非线性模型,并评估最佳解释模型。

结果

随机森林是最佳拟合预测模型,F值为80.42,相比其他5种模型(平均F值75.06;范围67.48 - 79.63)。当将预测模型应用于单个注射器驱动装置数据集中的输液数据时,发现与速率和护理单元相比,最终药物浓度和药物类型对输液持续时间的重要性较低。对于低速输液,速率在2至2.8毫升/小时之间时,在实现输液持续时间和每次输液的液体负荷之间的平衡方面表现最佳,堵塞与未堵塞的比例为0.553。速率在0.8至1.2毫升/小时之间表现最差,比例为1.604。更高的速率,高达4毫升/小时,在堵塞与未堵塞比例方面表现更好。

结论

本研究为临床医生提供了关于需要更密切观察或积极管理静脉通路的特定输液类型的见解;此外,它可以提供有关这些护理区域中预期的不间断输液平均持续时间的有价值信息。根据研究结果,通过为个体患者配制定制浓度来优化速率设置以提高连续输液的持续时间可能是可行的。该研究还强调了机器学习非线性模型在预测通过医疗设备进行的特定治疗的结果和寿命方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验