用于构建全面实时创伤观测站的深度学习Transformer模型:开发与验证研究
Deep Learning Transformer Models for Building a Comprehensive and Real-time Trauma Observatory: Development and Validation Study.
作者信息
Chenais Gabrielle, Gil-Jardiné Cédric, Touchais Hélène, Avalos Fernandez Marta, Contrand Benjamin, Tellier Eric, Combes Xavier, Bourdois Loick, Revel Philippe, Lagarde Emmanuel
机构信息
Unit 1219, Bordeaux Public Health Center, Institut National de la Santé et de la Recherche Médicale, Bordeaux, France.
Emergency Department, Bordeaux University Hospital, Bordeaux, France.
出版信息
JMIR AI. 2023 Jan 12;2:e40843. doi: 10.2196/40843.
BACKGROUND
Public health surveillance relies on the collection of data, often in near-real time. Recent advances in natural language processing make it possible to envisage an automated system for extracting information from electronic health records.
OBJECTIVE
To study the feasibility of setting up a national trauma observatory in France, we compared the performance of several automatic language processing methods in a multiclass classification task of unstructured clinical notes.
METHODS
A total of 69,110 free-text clinical notes related to visits to the emergency departments of the University Hospital of Bordeaux, France, between 2012 and 2019 were manually annotated. Among these clinical notes, 32.5% (22,481/69,110) were traumas. We trained 4 transformer models (deep learning models that encompass attention mechanism) and compared them with the term frequency-inverse document frequency associated with the support vector machine method.
RESULTS
The transformer models consistently performed better than the term frequency-inverse document frequency and a support vector machine. Among the transformers, the GPTanam model pretrained with a French corpus with an additional autosupervised learning step on 306,368 unlabeled clinical notes showed the best performance with a micro F-score of 0.969.
CONCLUSIONS
The transformers proved efficient at the multiclass classification of narrative and medical data. Further steps for improvement should focus on the expansion of abbreviations and multioutput multiclass classification.
背景
公共卫生监测通常依赖于近乎实时的数据收集。自然语言处理的最新进展使得设想一个从电子健康记录中提取信息的自动化系统成为可能。
目的
为研究在法国建立一个国家创伤监测站的可行性,我们在非结构化临床记录的多类分类任务中比较了几种自动语言处理方法的性能。
方法
对2012年至2019年期间法国波尔多大学医院急诊科就诊的69110份自由文本临床记录进行了人工标注。在这些临床记录中,32.5%(22481/69110)为创伤记录。我们训练了4种变压器模型(包含注意力机制的深度学习模型),并将它们与支持向量机方法相关的词频-逆文档频率进行比较。
结果
变压器模型的表现始终优于词频-逆文档频率和支持向量机。在变压器模型中,使用法语语料库预训练并在306368份未标注临床记录上进行额外自监督学习步骤的GPTanam模型表现最佳,微F值为0.969。
结论
变压器模型在叙事和医学数据的多类分类中被证明是有效的。进一步的改进措施应集中在缩写词扩展和多输出多类分类上。
相似文献
Int J Med Inform. 2019-10-2
BMC Med Inform Decis Mak. 2021-7-30
引用本文的文献
JMIR Med Inform. 2024-5-10
本文引用的文献
Proc Mach Learn Res. 2020-12
JMIR Med Inform. 2020-11-27
J Am Med Inform Assoc. 2020-3-1
J Am Med Inform Assoc. 2019-12-1
BMC Public Health. 2019-3-12
Influenza Other Respir Viruses. 2018-8-21
Int J Methods Psychiatr Res. 2016-9-15