Adams Griffin, Ketenci Mert, Bhave Shreyas, Perotte Adler, Elhadad Noémie
Columbia University, New York, NY, US.
Proc Mach Learn Res. 2020 Dec;136:12-40.
We introduce Latent Meaning Cells, a deep latent variable model which learns contextualized representations of words by combining local lexical context and metadata. Metadata can refer to granular context, such as section type, or to more global context, such as unique document ids. Reliance on metadata for contextualized representation learning is apropos in the clinical domain where text is semi-structured and expresses high variation in topics. We evaluate the LMC model on the task of zero-shot clinical acronym expansion across three datasets. The LMC significantly outperforms a diverse set of baselines at a fraction of the pre-training cost and learns clinically coherent representations. We demonstrate that not only is metadata itself very helpful for the task, but that the LMC inference algorithm provides an additional large benefit.
我们引入了潜在意义单元(Latent Meaning Cells),这是一种深度潜在变量模型,它通过结合局部词汇上下文和元数据来学习单词的上下文表示。元数据可以指粒度上下文,如章节类型,也可以指更全局的上下文,如唯一文档ID。在临床领域,文本是半结构化的,主题变化很大,因此在上下文表示学习中依赖元数据是恰当的。我们在三个数据集上的零样本临床首字母缩写扩展任务中评估了LMC模型。LMC在预训练成本的一小部分下显著优于各种不同的基线模型,并学习到临床上连贯的表示。我们证明,不仅元数据本身对该任务非常有帮助,而且LMC推理算法还提供了额外的巨大优势。