Suppr超能文献

通过自生长三维互连硅酸锌纳米片对锌板进行表面工程,有效引导锌离子沉积用于水系锌金属电池。

Surface engineering of zinc plate by self-growth three-dimensional-interconnected zinc silicate nanosheets effectively guiding the deposition of zinc ion for aqueous Zn metal battery.

作者信息

Gao Na, Wang Yu, Lv Tianming, Rong Mengyu, Dong Xueying, Chen Dongzhi, Meng Changgong, Zhang Yifu

机构信息

State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.

State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, China.

出版信息

J Colloid Interface Sci. 2024 Nov;673:70-79. doi: 10.1016/j.jcis.2024.06.069. Epub 2024 Jun 8.

Abstract

Among battery technologies, aqueous zinc ion batteries (AZIBs) have hit between the eyes in the next generation of extensive energy storage devices due to their outstanding superiority. The main problem that currently restricts the development of AZIBs is how to obtain stable Zn anodes. In this study, taking the improvement of a series of problems caused by the physically attached artificial interfacial layer on Zn anode as a starting point, a nanosheet morphology of ZnSiO (denoted as ZnSi) is constructed by self-growth on Zn foil (Zn@ZnSi) by a simple hydrothermal reaction. The ZnSi nano-interfacial layer effectively slices the surface of the Zn foil into individual microscopic interfacial layers, constructing abundant pores. The nanosheets of Zn@ZnSi construct rich nanoscale Zn transport channels, which provide higher electron and ion transport paths, thus achieving the effect of effectively homogenizing the electric field distribution and decreasing the local current density. Thanks to its inherent and structural properties, the Zn@ZnSi anode has a high specific capacity and good cycling stability compared with the Zn electrode. The lifetime of the Zn@ZnSi//Zn@ZnSi symmetric cell is much higher than that of the Zn//Zn symmetric cell at 1 mA cm. The capacity of the Zn@ZnSi//NHVO full cell can still reach 98 mAh g after 1000 cycles at 1 A/g. The low-cost and scalable synthesis of ZnSi nano-interfacial layer on Zn is expected to provide new perspectives on interfacial engineering for Zn anodic protection.

摘要

在电池技术中,水系锌离子电池(AZIBs)因其突出的优势在下一代大规模储能装置领域备受瞩目。目前限制水系锌离子电池发展的主要问题是如何获得稳定的锌负极。在本研究中,以改善锌负极上物理附着的人工界面层所引发的一系列问题为出发点,通过简单的水热反应在锌箔(Zn@ZnSi)上自生长构建了ZnSiO的纳米片形态(记为ZnSi)。ZnSi纳米界面层有效地将锌箔表面切割成单个微观界面层,形成大量孔隙。Zn@ZnSi的纳米片构建了丰富的纳米级锌传输通道,提供了更高的电子和离子传输路径,从而实现了有效均匀化电场分布和降低局部电流密度的效果。得益于其固有和结构特性,与锌电极相比,Zn@ZnSi负极具有较高的比容量和良好的循环稳定性。在1 mA cm下,Zn@ZnSi//Zn@ZnSi对称电池的寿命远高于Zn//Zn对称电池。在1 A/g下循环1000次后,Zn@ZnSi//NHVO全电池的容量仍可达到98 mAh g。在锌上低成本且可扩展地合成ZnSi纳米界面层有望为锌阳极保护的界面工程提供新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验