College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210000 Jiangsu, People's Republic of China.
Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
Bioinspir Biomim. 2024 Jul 3;19(5). doi: 10.1088/1748-3190/ad5899.
Gravitational forces can induce deviations in body posture from desired configurations in multi-legged arboreal robot locomotion with low leg stiffness, affecting the contact angle between the swing leg's end-effector and the climbing surface during the gait cycle. The relationship between desired and actual foot positions is investigated here in a leg-stiffness-enhanced model under external forces, focusing on the challenge of unreliable end-effector attachment on climbing surfaces in such robots. Inspired by the difference in ceiling attachment postures of dead and living geckos, feedforward compensation of the stance phase legs is the key to solving this problem. A feedforward gravity compensation (FGC) strategy, complemented by leg coordination, is proposed to correct gravity-influenced body posture and improve adhesion stability by reducing body inclination. The efficacy of this strategy is validated using a quadrupedal climbing robot, EF-I, as the experimental platform. Experimental validation on an inverted surface (ceiling walking) highlights the benefits of the FGC strategy, demonstrating its role in enhancing stability and ensuring reliable end-effector attachment without external assistance. In the experiment, robots without FGC only completed 3 out of 10 trials, while robots with FGC achieved a 100% success rate in the same trials. The speed was substantially greater with FGC, achieving 9.2 mm sin the trot gait. This underscores the proposed potential of the FGC strategy in overcoming the challenges associated with inconsistent end-effector attachment in robots with low leg stiffness, thereby facilitating stable locomotion even at an inverted body attitude.
在多足树栖机器人运动中,由于腿部刚度低,重力会导致身体姿势偏离期望的配置,从而影响步态周期中摆动腿末端执行器与攀爬表面之间的接触角。本文在外部力作用下,研究了增强腿部刚度模型中期望和实际足位置之间的关系,重点关注此类机器人中摆动腿末端执行器在攀爬表面上不可靠附着的挑战。受死、活壁虎在天花板上附着姿势差异的启发,在支撑阶段腿部的前馈补偿是解决这个问题的关键。提出了一种前馈重力补偿(FGC)策略,辅以腿部协调,通过减少身体倾斜来纠正受重力影响的身体姿势并提高附着稳定性。使用四足攀爬机器人 EF-I 作为实验平台验证了该策略的有效性。在倒置表面(天花板行走)上的实验验证突出了 FGC 策略的优势,证明了它在增强稳定性和确保可靠的末端执行器附着方面的作用,而无需外部辅助。在实验中,没有 FGC 的机器人只有 3 次成功完成了 10 次试验中的 1 次,而有 FGC 的机器人在相同的试验中成功率达到了 100%。FGC 的速度显著提高,在小跑步态中达到了 9.2mm/s。这突显了 FGC 策略在克服低刚度腿部机器人末端执行器附着不一致相关挑战方面的潜在应用,从而即使在倒置的身体姿态下也能实现稳定的运动。