Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4052, Switzerland.
Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
Cell Stem Cell. 2024 Aug 1;31(8):1175-1186.e7. doi: 10.1016/j.stem.2024.05.007. Epub 2024 Jun 13.
Organoids and organs-on-a-chip have emerged as powerful tools for modeling human gut physiology and disease in vitro. Although physiologically relevant, these systems often lack the environmental milieu, spatial organization, cell type diversity, and maturity necessary for mimicking human intestinal mucosa. To instead generate models closely resembling in vivo tissue, we herein integrated organoid and organ-on-a-chip technology to develop an advanced human organoid model, called "mini-colons." By employing an asymmetric stimulation with growth factors, we greatly enhanced tissue longevity and replicated in vivo-like diversity and patterning of proliferative and differentiated cell types. Mini-colons contain abundant mucus-producing goblet cells and, signifying mini-colon maturation, single-cell RNA sequencing reveals emerging mature and functional colonocytes. This methodology is expanded to generate microtissues from the small intestine and incorporate additional microenvironmental components. Finally, our bioengineered organoids provide a precise platform to systematically study human gut physiology and pathology, and a reliable preclinical model for drug safety assessment.
类器官和器官芯片已成为体外模拟人类肠道生理学和疾病的有力工具。尽管具有生理相关性,但这些系统通常缺乏环境、空间组织、细胞类型多样性和成熟度,无法模拟人类肠道黏膜。为了生成更接近体内组织的模型,我们整合了类器官和器官芯片技术,开发了一种称为“迷你结肠”的先进人类类器官模型。通过采用生长因子的不对称刺激,我们大大延长了组织的寿命,并复制了体内样的增殖和分化细胞类型的多样性和模式。迷你结肠含有丰富的产生粘蛋白的杯状细胞,单细胞 RNA 测序表明出现了成熟的和有功能的结肠细胞。该方法可扩展到从小肠生成微组织,并纳入其他微环境成分。最后,我们的生物工程类器官为系统研究人类肠道生理学和病理学提供了精确的平台,并为药物安全性评估提供了可靠的临床前模型。