Department of Animal Science, University of California, Davis, Davis, CA 95616.
Department of Animal Science, University of California, Davis, Davis, CA 95616.
J Dairy Sci. 2024 Nov;107(11):9442-9458. doi: 10.3168/jds.2023-24529. Epub 2024 Jun 13.
This research introduces a systematic framework for calculating sample size in studies focusing on enteric methane (CH, g/kg of DMI) yield reduction in dairy cows. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive search across the Web of Science, Scopus, and PubMed Central databases for studies published from 2012 to 2023. The inclusion criteria were as follows: studies reporting CH yield and its variability in dairy cows, employing specific experimental designs (Latin square design [LSqD], crossover design, randomized complete block design [RCBD], and repeated measures design) and measurement methods (open-circuit respirometry chambers [RC], the GreenFeed system, and the sulfur hexafluoride tracer technique), conducted in Canada, the United States, and Europe. A total of 150 studies, comprising 177 reports, met our criteria and were included in the database. Our methodology for using the database for sample size calculations began by defining 6 CH yield reduction levels (5%, 10%, 15%, 20%, 30%, and 50%). Using an adjusted Cohen's f formula and conducting power analysis, we calculated the sample sizes required for these reductions in balanced LSqD and RCBD reports from studies involving 3 or 4 treatments. The results indicate that within-subject studies (i.e., LSqD) require smaller sample sizes to detect CH yield reductions compared with between-subject studies (i.e., RCBD). Although experiments using RC typically require fewer individuals due to their higher accuracy, our results demonstrate that this expected advantage is not evident in reports from RCBD studies with 4 treatments. A key innovation of this research is the development of a web-based tool that simplifies the process of sample size calculation (https://samplesizecalculator.ucdavis.edu/). Developed using Python, this tool leverages the extensive database to provide tailored sample size recommendations for specific experimental scenarios. It ensures that experiments are adequately powered to detect meaningful differences in CH emissions, thereby contributing to the scientific rigor of studies in this critical area of environmental and agricultural research. With its user-friendly interface and robust back-end calculations, this tool represents an important advancement in the methodology for planning and executing CH emission studies in dairy cows, aligning with global efforts toward sustainable agricultural practices and environmental conservation.
本研究提出了一个系统的框架,用于计算关注奶牛肠道甲烷(CH,以每千克干物质采食量计)产量减少的研究中的样本量。我们遵循系统评价和荟萃分析的首选报告项目(PRISMA)指南,在 Web of Science、Scopus 和 PubMed Central 数据库中全面搜索了 2012 年至 2023 年发表的研究。纳入标准如下:报告奶牛 CH 产量及其变异性的研究,采用特定的实验设计(拉丁方设计[LSqD]、交叉设计、随机完全区组设计[RCBD]和重复测量设计)和测量方法(开路呼吸室[RC]、GreenFeed 系统和六氟化硫示踪技术),在加拿大、美国和欧洲进行。共有 150 项研究,包含 177 项报告,符合我们的标准并被纳入数据库。我们使用数据库进行样本量计算的方法始于定义 6 个 CH 产量减少水平(5%、10%、15%、20%、30%和 50%)。使用调整后的 Cohen's f 公式并进行功效分析,我们计算了在涉及 3 或 4 种处理的平衡 LSqD 和 RCBD 报告中实现这些减少所需的样本量。结果表明,与个体间研究(即 RCBD)相比,个体内研究(即 LSqD)需要更小的样本量来检测 CH 产量减少。尽管使用 RC 进行的实验通常由于其更高的准确性而需要更少的个体,但我们的结果表明,在具有 4 种处理的 RCBD 研究报告中,这种预期的优势并不明显。本研究的一个创新点是开发了一个基于网络的工具,简化了样本量计算的过程(https://samplesizecalculator.ucdavis.edu/)。该工具使用 Python 开发,利用广泛的数据库为特定的实验场景提供定制化的样本量建议。它确保实验具有足够的功效来检测 CH 排放的有意义差异,从而为这一关键领域的环境和农业研究的科学严谨性做出贡献。该工具具有用户友好的界面和强大的后端计算能力,是规划和执行奶牛 CH 排放研究方法的重要进展,符合全球向可持续农业实践和环境保护努力的方向。