Suppr超能文献

氮掺杂空心碳球复合MnO作为锂硫电池的先进主体材料

Nitrogen-doped hollow carbon sphere composite MnO as an advanced host for lithium-sulfur battery.

作者信息

Wang Haibin, Liu Jun, Ju Wenqi, Xu Xupeng, Chen Jiwei

机构信息

School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China.

School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China.

出版信息

Sci Rep. 2024 Jun 14;14(1):13714. doi: 10.1038/s41598-024-64067-8.

Abstract

As the most promising advanced energy storage system, lithium-sulfur batteries (LSBs) are highly favored by the researchers because of their advantages of high energy density (2500 W h kg), low cost and non-pollution. However, the low conductivity, volume expansion of sulfur, and shuttle effect are still the great hindrance to the practical application of LSBs. Herein, the above problems can be addressed through the following strategies: (1) Hollow carbon microspheres with high specific surface area were constructed as sulfur hosts to increase sulfur loading while also being able to enhance the physical adsorption of polysulfides; (2) the loading of MnO particles on the basis of hollow carbon microspheres facilitates the capture and adsorption of polysulfides; (3) the hollow carbon sphere structure as a conductive network can provide more pathways for rapid electrical/ionic transport and also accelerate electrolyte wetting. Moreover, the thinner shell of hollow carbon microsphere is conducive to ion diffusion and speed up the reaction rate. Thus, the NHCS/MnO/S composites exhibit a high discharge specific capacity of 1010.3 mAh g at first and still maintained a reversible capacity of 269.2 mAh g after 500 cycles. This work presents a facile sustainable and efficient synergistic strategy for the development of advanced LSBs.

摘要

作为最具前景的先进储能系统,锂硫电池(LSBs)因其高能量密度(2500 W h kg)、低成本和无污染等优点而备受研究人员青睐。然而,低电导率、硫的体积膨胀和穿梭效应仍然是锂硫电池实际应用的巨大障碍。在此,上述问题可通过以下策略解决:(1)构建具有高比表面积的空心碳微球作为硫载体,以增加硫负载量,同时还能增强对多硫化物的物理吸附;(2)在空心碳微球的基础上负载MnO颗粒,有助于捕获和吸附多硫化物;(3)空心碳球结构作为导电网络,可为快速的电子/离子传输提供更多途径,还能加速电解质的浸润。此外,空心碳微球较薄的壳有利于离子扩散并加快反应速率。因此,NHCS/MnO/S复合材料最初表现出1010.3 mAh g的高放电比容量,在500次循环后仍保持269.2 mAh g的可逆容量。这项工作为先进锂硫电池的开发提出了一种简便、可持续且高效的协同策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18a9/11178808/056fb8ad3aa0/41598_2024_64067_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验