College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Department of Chemistry, Technische Universität Berlin, Berlin, 10623, Germany.
Angew Chem Int Ed Engl. 2023 Jan 2;62(1):e202215414. doi: 10.1002/anie.202215414. Epub 2022 Dec 1.
Accelerating insoluble Li S -Li S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li S . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li S -Li S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N -based cathodes exhibit the fastest deposition kinetics of Li S (226 mAh g ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li S -Li S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.
加速不溶 Li S -Li S 还原催化以减轻穿梭效应已成为高效锂硫电池正极的创新范例,例如单原子催化剂通过提供高密度活性位点来实现与固体 Li S 的原位反应。然而,不同单原子物种在固-固硫还原催化中的深刻起源和调制原理仍不清楚。在这里,我们揭示了基于铁磁元素的单原子材料中 Li S -Li S 还原催化的基本起源是来自它们的自旋密度和磁矩。实验和理论研究表明,基于 Fe-N 的正极具有最快的 Li S 沉积动力学(226 mAh g )和最低的热力学能垒(0.56 eV)。我们相信,通过铁磁原子的自旋极化实现的加速 Li S -Li S 还原催化为长寿命电池提供了实际机会。