Suppr超能文献

LoRA-TV:单细胞测序中基于读深度谱的肿瘤细胞聚类。

LoRA-TV: read depth profile-based clustering of tumor cells in single-cell sequencing.

机构信息

Key Laboratory of Biomedical Information Engineering of Ministry of Education and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae277.

Abstract

Single-cell sequencing has revolutionized our ability to dissect the heterogeneity within tumor populations. In this study, we present LoRA-TV (Low Rank Approximation with Total Variation), a novel method for clustering tumor cells based on the read depth profiles derived from single-cell sequencing data. Traditional analysis pipelines process read depth profiles of each cell individually. By aggregating shared genomic signatures distributed among individual cells using low-rank optimization and robust smoothing, the proposed method enhances clustering performance. Results from analyses of both simulated and real data demonstrate its effectiveness compared with state-of-the-art alternatives, as supported by improvements in the adjusted Rand index and computational efficiency.

摘要

单细胞测序技术的发展极大地提高了我们解析肿瘤群体异质性的能力。在这项研究中,我们提出了 LoRA-TV(基于全变差的低秩逼近),这是一种基于单细胞测序数据读取深度谱聚类肿瘤细胞的新方法。传统的分析流程单独处理每个细胞的读取深度谱。通过使用低秩优化和稳健平滑对分布在单个细胞中的共享基因组特征进行聚合,该方法增强了聚类性能。通过对模拟和真实数据的分析,结果表明与最先进的方法相比,该方法具有更好的效果,支持该结论的是调整后的 Rand 指数和计算效率的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8313/11179121/1a12196c88a2/bbae277f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验