Rare Cancers Genomic Team, Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France; Department of Mathematics and Informatics, Ecole Centrale de Lyon, Lyon, France.
UMR CNRS 5558 LBBE, Claude Bernard Lyon 1 University, Villeurbanne, France; Prevention & Public Health Department, Centre Léon Bérard, Lyon, France.
ESMO Open. 2024 Jun;9(6):103591. doi: 10.1016/j.esmoop.2024.103591. Epub 2024 Jun 14.
Six thoracic pathologists reviewed 259 lung neuroendocrine tumours (LNETs) from the lungNENomics project, with 171 of them having associated survival data. This cohort presents a unique opportunity to assess the strengths and limitations of current World Health Organization (WHO) classification criteria and to evaluate the utility of emerging markers.
Patients were diagnosed based on the 2021 WHO criteria, with atypical carcinoids (ACs) defined by the presence of focal necrosis and/or 2-10 mitoses per 2 mm. We investigated two markers of tumour proliferation: the Ki-67 index and phospho-histone H3 (PHH3) protein expression, quantified by pathologists and automatically via deep learning. Additionally, an unsupervised deep learning algorithm was trained to uncover previously unnoticed morphological features with diagnostic value.
The accuracy in distinguishing typical from ACs is hampered by interobserver variability in mitotic counting and the limitations of morphological criteria in identifying aggressive cases. Our study reveals that different Ki-67 cut-offs can categorise LNETs similarly to current WHO criteria. Counting mitoses in PHH3+ areas does not improve diagnosis, while providing a similar prognostic value to the current criteria. With the advantage of being time efficient, automated assessment of these markers leads to similar conclusions. Lastly, state-of-the-art deep learning modelling does not uncover undisclosed morphological features with diagnostic value.
This study suggests that the mitotic criteria can be complemented by manual or automated assessment of Ki-67 or PHH3 protein expression, but these markers do not significantly improve the prognostic value of the current classification, as the AC group remains highly unspecific for aggressive cases. Therefore, we may have exhausted the potential of morphological features in classifying and prognosticating LNETs. Our study suggests that it might be time to shift the research focus towards investigating molecular markers that could contribute to a more clinically relevant morpho-molecular classification.
六位胸病理学家对来自 lungNENomics 项目的 259 例肺神经内分泌肿瘤(LNET)进行了回顾性研究,其中 171 例有相关生存数据。该队列为评估当前世界卫生组织(WHO)分类标准的优势和局限性以及评估新兴标志物的实用性提供了独特的机会。
根据 2021 年 WHO 标准对患者进行诊断,局灶性坏死和/或每 2mm2 有 2-10 个有丝分裂的不典型类癌(ACs)定义为存在局灶性坏死和/或每 2mm2 有 2-10 个有丝分裂。我们研究了两种肿瘤增殖标志物:Ki-67 指数和磷酸化组蛋白 H3(PHH3)蛋白表达,由病理学家和通过深度学习自动进行定量。此外,还训练了一种无监督深度学习算法来揭示具有诊断价值的以前未被注意到的形态特征。
在区分典型 LNET 和 AC 时,由于有丝分裂计数的观察者间变异性以及形态学标准在识别侵袭性病例方面的局限性,准确性受到阻碍。我们的研究表明,不同的 Ki-67 截止值可以与当前的 WHO 标准类似地对 LNET 进行分类。在 PHH3+区域计数有丝分裂并不能改善诊断,而提供与当前标准相似的预后价值。由于具有节省时间的优势,这些标志物的自动评估得出了类似的结论。最后,最先进的深度学习模型并没有发现具有诊断价值的未公开形态特征。
本研究表明,有丝分裂标准可以通过手动或自动评估 Ki-67 或 PHH3 蛋白表达来补充,但这些标志物并没有显著提高当前分类的预后价值,因为 AC 组对于侵袭性病例仍然高度不特异。因此,我们可能已经耗尽了形态特征在分类和预后 LNET 方面的潜力。我们的研究表明,现在可能是时候将研究重点转移到研究有助于更具临床相关性的形态-分子分类的分子标志物上。