Suppr超能文献

基于多期 CT 扫描的病灶感知交叉相位注意网络的肾肿瘤亚型分类。

Lesion-aware cross-phase attention network for renal tumor subtype classification on multi-phase CT scans.

机构信息

Department of Electrical Engineering Korea University, Seoul, Korea.

Department of Electrical Engineering Korea University, Seoul, Korea.

出版信息

Comput Biol Med. 2024 Aug;178:108746. doi: 10.1016/j.compbiomed.2024.108746. Epub 2024 Jun 15.

Abstract

Multi-phase computed tomography (CT) has been widely used for the preoperative diagnosis of kidney cancer due to its non-invasive nature and ability to characterize renal lesions. However, since enhancement patterns of renal lesions across CT phases are different even for the same lesion type, the visual assessment by radiologists suffers from inter-observer variability in clinical practice. Although deep learning-based approaches have been recently explored for differential diagnosis of kidney cancer, they do not explicitly model the relationships between CT phases in the network design, limiting the diagnostic performance. In this paper, we propose a novel lesion-aware cross-phase attention network (LACPANet) that can effectively capture temporal dependencies of renal lesions across CT phases to accurately classify the lesions into five major pathological subtypes from time-series multi-phase CT images. We introduce a 3D inter-phase lesion-aware attention mechanism to learn effective 3D lesion features that are used to estimate attention weights describing the inter-phase relations of the enhancement patterns. We also present a multi-scale attention scheme to capture and aggregate temporal patterns of lesion features at different spatial scales for further improvement. Extensive experiments on multi-phase CT scans of kidney cancer patients from the collected dataset demonstrate that our LACPANet outperforms state-of-the-art approaches in diagnostic accuracy.

摘要

多期计算机断层扫描(CT)由于其非侵入性和对肾脏病变的特征描述能力,已被广泛应用于肾癌的术前诊断。然而,由于即使是同一病变类型,在 CT 各期的增强模式也不同,放射科医生的视觉评估在临床实践中存在观察者间变异性。尽管基于深度学习的方法最近已被探索用于肾癌的鉴别诊断,但它们在网络设计中没有明确地对 CT 各期之间的关系进行建模,限制了诊断性能。在本文中,我们提出了一种新的基于病变感知的跨期注意力网络(LACPANet),可以有效地捕捉 CT 各期之间肾脏病变的时间依赖性,从而从时间序列多期 CT 图像中准确地将病变分类为五种主要的病理亚型。我们引入了一种 3D 跨期病变感知注意力机制,以学习有效的 3D 病变特征,用于估计描述增强模式的跨期关系的注意力权重。我们还提出了一种多尺度注意力方案,以捕获和聚合不同空间尺度的病变特征的时间模式,以进一步提高性能。在从所收集的数据集采集的肾癌患者的多期 CT 扫描上进行的广泛实验表明,我们的 LACPANet 在诊断准确性方面优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验