Mao Chengkai, Shao Haiyang, Huang Chen, Chen Lei, Ma Lin, Ren Yingfei, Tu Mengxin, Wang Hongyong, Gu Jianzhong, Ma Hongjuan, Xu Gang
Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road, Shanghai 201800, PR China.
School of Future Membrane Technology, Fuzhou University, Fuzhou 350108, PR China.
J Hazard Mater. 2024 Aug 15;475:134795. doi: 10.1016/j.jhazmat.2024.134795. Epub 2024 Jun 1.
Functionalization of graphene enables precise control over interlayer spacing during film formation, thereby enhancing the separation efficiency of radioactive ions in graphene membranes. However, the systematic impact of interlayer spacing of graphene membranes on radioactive-ion separation remains unexplored. This study aims to elucidate how interlayer spacing in functionalized graphene membranes affects the separation of radioactive ions. Utilizing polyamidoxime (PAO) to modify graphene oxide, we controlled the interlayer spacing of graphene membranes. Experimental results indicate that tuning interlayer spacing enables control of the permeation flux of radioactive ions (UO 1.01 × 10-8.32 × 10 mol/m·h, and K remains stable at 3.60 × 10 mol/m·h), and the K/UO separation factors up to 36.2 at an interlayer spacing of 8.8 Å. Using density functional theory and molecular dynamics simulations, we discovered that the effective separation is mainly determined via interlayer spacing and the quantity of introduced functional groups, explaining the anomalous high permeation flux of target ions at low interlayer spacing (4.3 Å). This study deepens our comprehension of interlayer spacing within nanoconfined spaces for ion separation and recovery via graphene membranes, offering valuable insights for the design and synthesis of high-performance nanomembrane materials.
石墨烯的功能化能够在成膜过程中精确控制层间距,从而提高石墨烯膜中放射性离子的分离效率。然而,石墨烯膜的层间距对放射性离子分离的系统性影响仍未得到探索。本研究旨在阐明功能化石墨烯膜中的层间距如何影响放射性离子的分离。利用聚偕胺肟(PAO)对氧化石墨烯进行改性,我们控制了石墨烯膜的层间距。实验结果表明,调节层间距能够控制放射性离子的渗透通量(UO为1.01×10⁻⁸.³²×10摩尔/米·小时,K保持稳定在3.60×10摩尔/米·小时),并且在层间距为8.8埃时K/UO分离因子高达36.2。通过密度泛函理论和分子动力学模拟,我们发现有效分离主要由层间距和引入的官能团数量决定,这解释了在低层间距(4.3埃)下目标离子异常高的渗透通量。本研究加深了我们对通过石墨烯膜进行离子分离和回收的纳米受限空间内层间距的理解,为高性能纳米膜材料的设计和合成提供了有价值的见解。