Du Yang, Xu Xin-Xin, Yu Sai-Xi, Wang Yi-Ran, Liu Yixin, Liu Fan, Liu Wei, Li Xiu-Lan, Luo Hao, Jing Guangyin, Liu Yan-Jun
Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Talanta. 2024 Sep 1;277:126415. doi: 10.1016/j.talanta.2024.126415. Epub 2024 Jun 11.
Endothelial cells (ECs) migration is a crucial early step in vascular repair and tissue neovascularization. While extensive research has elucidated the biochemical drivers of endothelial motility, the impact of biophysical cues, including vessel geometry and topography, remains unclear. Herein, we present a novel approach to reconstruct 3D self-assembly blood vessels-on-a-chip that accurately replicates real vessel geometry and topography, surpassing conventional 2D flat tube formation models. This vessels-on-a-chip system enables real-time monitoring of vasculogenesis and ECs migration at high spatiotemporal resolution. Our findings reveal that ECs exhibit increased migration speed and directionality in response to narrower vessel geometries, transitioning from a rounded to a polarized morphology. These observations underscore the critical influence of vessel size in regulating ECs migration and morphology. Overall, our study highlights the importance of biophysical factors in shaping ECs behavior, emphasizing the need to consider such factors in future studies of endothelial function and vessel biology.
内皮细胞迁移是血管修复和组织新生血管形成的关键早期步骤。尽管广泛的研究已经阐明了内皮细胞运动的生化驱动因素,但生物物理线索(包括血管几何形状和拓扑结构)的影响仍不清楚。在此,我们提出了一种新颖的方法来重建芯片上的三维自组装血管,该方法能够准确复制真实血管的几何形状和拓扑结构,超越了传统的二维扁平管形成模型。这种芯片上血管系统能够以高时空分辨率实时监测血管生成和内皮细胞迁移。我们的研究结果表明,内皮细胞在更窄的血管几何形状下迁移速度和方向性增加,形态从圆形转变为极化形态。这些观察结果强调了血管大小在调节内皮细胞迁移和形态方面的关键影响。总体而言,我们的研究突出了生物物理因素在塑造内皮细胞行为方面的重要性,强调在未来内皮功能和血管生物学研究中需要考虑这些因素。