Suppr超能文献

利用转基因鹌鹑胚胎进行血管形态发生的动态分析。

Dynamic analysis of vascular morphogenesis using transgenic quail embryos.

机构信息

Division of Biology, Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America.

出版信息

PLoS One. 2010 Sep 14;5(9):e12674. doi: 10.1371/journal.pone.0012674.

Abstract

BACKGROUND

One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.

METHODOLOGY/PRINCIPAL FINDINGS: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.

CONCLUSIONS/SIGNIFICANCE: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development.

摘要

背景

生物学家面临的一个最难以理解但又至关重要的问题是,最初简单的细胞簇或片状细胞集合体如何组装成高度复杂的三维功能组织和器官。由于氧气扩散的限制,血管是所有羊膜动物组织和器官中必不可少的普遍存在。血管发生是内皮细胞(EC)前体自发组装成内皮管的第一步,是血管形成的第一步。静态成像和体外模型完全不足以捕捉体内血管模式形成的许多方面,因为血管发生涉及内皮细胞和正在形成的血管的动态变化,而胚胎的大小和形状也在不断变化。

方法/主要发现:我们生成了 Tie1 转基因鹌鹑系 Tg(tie1:H2B-eYFP),其所有内皮细胞都表达 H2B-eYFP,这使得我们能够以前所未有的清晰度和洞察力研究早期胚胎血管形态发生。通过将分子遗传学的力量与动态成像的优雅相结合,我们可以跟踪内皮细胞在空间和时间上的精确模式。我们表明,在血管丛中的血管发生过程中,EC 独立移动形成血管的雏形,同时与向胚胎中线流动的原肠胚组织一起集体移动。主动脉由来自体节的内皮细胞形成其背侧区域和来自脏壁的内皮细胞形成其腹侧区域组成。形成的主动脉背侧区域的 EC 表现出不同的中侧运动,因为它们向头侧移动;那些在更腹侧的区域表现出显著的侧向到内侧的运动,因为它们向头侧移动。

结论/意义:目前的结果为研究血管发育的力学、分子和细胞机制的相对作用这一主要挑战提供了一种强大的方法。在过去的研究中,可用的分子遗传学工具的优势被用于成像和干扰研究所需的有限实验可及性所抵消。禽类胚胎提供了所需的可及性,但遗传资源很少。具有标记内皮的转基因鹌鹑的创建是建立在禽类胚胎在以前的血管发育研究中所起的重要作用之上的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9b/2939056/fc3ed5e8ea72/pone.0012674.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验