Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan, 60800, Pakistan.
Department of Physics, Faculty of Sciences-Arar, Northern Border University, Arar, 91431, Saudi Arabia.
Biosens Bioelectron. 2024 Oct 1;261:116498. doi: 10.1016/j.bios.2024.116498. Epub 2024 Jun 13.
The World Anti-Doping Agency (WADA) has prohibited the use of clenbuterol (CLN) because it induces anabolic muscle growth while potentially causing adverse effects such as palpitations, anxiety, and muscle tremors. Thus, it is vital to assess meat quality because, athletes might have positive test for CLN even after consuming very low quantity of CLN contaminated meat. Numerous materials applied for CLN monitoring faced potential challenges like sluggish ion transport, non-uniform ion/molecule movement, and inadequate electrode surface binding. To overcome these shortcomings, herein we engineered bimetallic zeolitic imidazole framework (BM-ZIF) derived N-doped porous carbon embedded Co nanoparticles (CN-CoNPs), dispersed on conductive cellulose acetate-polyaniline (CP) electrospun nanofibers for sensitive electrochemical monitoring of CLN. Interestingly, the smartly designed CN-CoNPs wrapped CP (CN-CoNPs-CP) electrospun nanofibers offers rapid diffusion of CLN molecules to the sensing interface through amine and imine groups of CP, thus minimizing the inhomogeneous ion transportation and inadequate electrode surface binding. Additionally, to synchronize experiments, machine learning (ML) algorithms were applied to optimize, predict, and validate voltametric current responses. The ML-trained sensor demonstrated high selectivity, even amidst interfering substances, with notable sensitivity (4.7527 μA/μM/cm), a broad linear range (0.002-8 μM), and a low limit of detection (1.14 nM). Furthermore, the electrode exhibited robust stability, retaining 98.07% of its initial current over a 12-h period. This ML-powered sensing approach was successfully employed to evaluate meat quality in terms of CLN level. To the best of our knowledge, this is the first study of using ML powered system for electrochemical sensing of CLN.
世界反兴奋剂机构(WADA)已禁止使用克仑特罗(CLN),因为它在诱导肌肉生长的同时,还可能引起心悸、焦虑和肌肉震颤等不良反应。因此,评估肉品质量至关重要,因为运动员即使食用了极少量受 CLN 污染的肉类,也可能会被检测出 CLN 呈阳性。在监测 CLN 时,许多材料都面临着缓慢的离子传输、非均匀的离子/分子运动以及电极表面结合不足等潜在挑战。为了克服这些缺点,我们在这里设计了双金属沸石咪唑骨架(BM-ZIF)衍生的氮掺杂多孔碳嵌入钴纳米粒子(CN-CoNPs),分散在导电醋酸纤维素-聚苯胺(CP)电纺纳米纤维上,用于 CLN 的灵敏电化学监测。有趣的是,设计精巧的 CN-CoNPs 包裹 CP(CN-CoNPs-CP)电纺纳米纤维通过 CP 的胺基和亚胺基为 CLN 分子提供了到传感界面的快速扩散途径,从而最大限度地减少了不均匀的离子传输和电极表面结合不足。此外,为了同步实验,应用机器学习(ML)算法对伏安电流响应进行优化、预测和验证。经过 ML 训练的传感器表现出很高的选择性,即使在存在干扰物质的情况下也具有显著的灵敏度(4.7527 μA/μM/cm)、较宽的线性范围(0.002-8 μM)和较低的检测限(1.14 nM)。此外,该电极表现出良好的稳定性,在 12 小时内保留了初始电流的 98.07%。该基于 ML 的传感方法成功地用于评估肉品中 CLN 水平。据我们所知,这是首次使用基于 ML 的系统进行 CLN 的电化学传感研究。