Suppr超能文献

基于 Au NPs 诱导 PFO Pdots 低电位发射和 LSPR-ECL 机制的双信号比率型电化学发光生物传感器用于超灵敏检测 microRNA-141。

Dual-signal ratiometric electrochemiluminescence biosensor based on Au NPs-induced low-potential emission of PFO Pdots and LSPR-ECL mechanism for ultra-sensitive detection of microRNA-141.

机构信息

College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China.

College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China.

出版信息

Biosens Bioelectron. 2024 Oct 1;261:116495. doi: 10.1016/j.bios.2024.116495. Epub 2024 Jun 11.

Abstract

In this study, we have for the first time constructed a ratiometric ECL biosensor for the ultrasensitive detection of microRNAs (miRNAs) using gold nanoparticles (Au NPs) to trigger both the low-potential emission from conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) dots (PFO Pdots) and the LSPR-ECL effect with sulfur-doped boron nitride quantum dots (S-BN QDs). PFO Pdots were first applied to the Au NPs-modified electrode, followed by covalent binding to capture the hairpin H1. Immediately thereafter, a small amount of miRNA-141 was able to generate a large amount of output DNA (OP) by traversing the target cycle. OP, H3-S-BN QDs, and H4-glucose oxidase (H4-GOD) were then added sequentially to the Au NPs-modified electrode surface, and the hybridization chain reaction (HCR) was initiated. This resulted in the introduction of a large amount of GOD into the system, which catalyzed the in situ formation of the co-reactant hydrogen peroxide (HO) from the substrate glucose. Due to the electron transfer effect, the production of HO led to the ECL quenching of PFO Pdots. Meanwhile, HO served as a co-reactant of S-BN QDs, resulting in strong ECL emission of S-BN QDs at the cathode. Furthermore, the cathodic ECL intensity of S-BN QDs was further enhanced by an LSPR-ECL mechanism between Au NPs and S-BN QDs. By measuring the ratio of ECL intensities at two excitation potentials, this approach could provide sensitive and reliable detection of miRNA-141 in the range of 0.1 fM ∼10 nM, with a detection limit of 0.1 fM.

摘要

在这项研究中,我们首次构建了一种比率型电致化学发光(ECL)生物传感器,用于超灵敏检测 microRNAs(miRNAs),使用金纳米粒子(Au NPs)触发共轭聚合物聚(9,9-二辛基芴-2,7-二基)点(PFO Pdots)的低电位发射和硫掺杂氮化硼量子点(S-BN QDs)的 LSPR-ECL 效应。首先将 PFO Pdots 应用于 Au NPs 修饰的电极上,然后通过共价键合来捕获发夹 H1。此后,少量的 miRNA-141 能够通过跨越靶循环生成大量输出 DNA(OP)。OP、H3-S-BN QDs 和 H4-葡萄糖氧化酶(H4-GOD)随后被顺序添加到 Au NPs 修饰的电极表面,并引发杂交链式反应(HCR)。这导致大量 GOD 被引入系统,其从底物葡萄糖中催化原位形成共反应物过氧化氢(HO)。由于电子转移效应,HO 的产生导致 PFO Pdots 的 ECL 猝灭。同时,HO 作为 S-BN QDs 的共反应物,导致 S-BN QDs 在阴极产生强 ECL 发射。此外,Au NPs 和 S-BN QDs 之间的 LSPR-ECL 机制进一步增强了 S-BN QDs 的阴极 ECL 强度。通过测量两个激发电位下的 ECL 强度比,可以在 0.1 fM ∼10 nM 的范围内提供对 miRNA-141 的敏感和可靠检测,检测限为 0.1 fM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验