DentalSegmentator:基于深度学习的强大开源 CT 和 CBCT 图像分割。

DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation.

机构信息

UFR Odontologie, Universite Paris Cité, Paris, France; Service de Medecine Bucco-Dentaire, AP-HP, Hopital Pitie-Salpetriere, Paris, France; Institut de Biomecanique Humaine Georges Charpak, Arts et Metiers Institute of Technology, Paris, France.

Department of Oral Medicine and Radiology, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India.

出版信息

J Dent. 2024 Aug;147:105130. doi: 10.1016/j.jdent.2024.105130. Epub 2024 Jun 13.

Abstract

OBJECTIVES

Segmentation of anatomical structures on dento-maxillo-facial (DMF) computed tomography (CT) or cone beam computed tomography (CBCT) scans is increasingly needed in digital dentistry. The main aim of this research was to propose and evaluate a novel open source tool called DentalSegmentator for fully automatic segmentation of five anatomical structures on DMF CT and CBCT scans: maxilla/upper skull, mandible, upper teeth, lower teeth, and the mandibular canal.

METHODS

A retrospective sample of 470 CT and CBCT scans was used as a training/validation set. The performance and generalizability of the tool was evaluated by comparing segmentations provided by experts and automatic segmentations in two hold-out test datasets: an internal dataset of 133 CT and CBCT scans acquired before orthognathic surgery and an external dataset of 123 CBCT scans randomly sampled from routine examinations in 5 institutions.

RESULTS

The mean overall results in the internal test dataset (n = 133) were a Dice similarity coefficient (DSC) of 92.2 ± 6.3 % and a normalised surface distance (NSD) of 98.2 ± 2.2 %. The mean overall results on the external test dataset (n = 123) were a DSC of 94.2 ± 7.4 % and a NSD of 98.4 ± 3.6 %.

CONCLUSIONS

The results obtained from this highly diverse dataset demonstrate that this tool can provide fully automatic and robust multiclass segmentation for DMF CT and CBCT scans. To encourage the clinical deployment of DentalSegmentator, the pre-trained nnU-Net model has been made publicly available along with an extension for the 3D Slicer software.

CLINICAL SIGNIFICANCE

DentalSegmentator open source 3D Slicer extension provides a free, robust, and easy-to-use approach to obtaining patient-specific three-dimensional models from CT and CBCT scans. These models serve various purposes in a digital dentistry workflow, such as visualization, treatment planning, intervention, and follow-up.

摘要

目的

在数字化牙科中,越来越需要对口腔颌面计算机断层扫描(CT)或锥形束 CT(CBCT)扫描中的解剖结构进行分割。本研究的主要目的是提出并评估一种名为 DentalSegmentator 的新型开源工具,用于全自动分割口腔颌面 CT 和 CBCT 扫描中的五个解剖结构:上颌骨/颅骨、下颌骨、上颌牙、下颌牙和下颌管。

方法

使用 470 个 CT 和 CBCT 扫描的回顾性样本作为训练/验证集。通过比较专家提供的分割和两个留存测试数据集(133 个术前正颌手术 CT 和 CBCT 扫描的内部数据集和 5 个机构常规检查中随机抽取的 123 个 CBCT 扫描的外部数据集)中的自动分割,评估工具的性能和泛化能力。

结果

内部测试数据集(n=133)的平均总体结果为 92.2±6.3%的 Dice 相似系数(DSC)和 98.2±2.2%的归一化表面距离(NSD)。外部测试数据集(n=123)的平均总体结果为 94.2±7.4%的 DSC 和 98.4±3.6%的 NSD。

结论

从这个高度多样化的数据集获得的结果表明,该工具可以为口腔颌面 CT 和 CBCT 扫描提供全自动和稳健的多类分割。为了鼓励 DentalSegmentator 的临床应用,已公开提供经过预训练的 nnU-Net 模型以及 3D Slicer 软件的扩展。

临床意义

DentalSegmentator 开源 3D Slicer 扩展提供了一种免费、稳健且易于使用的方法,可从 CT 和 CBCT 扫描中获取患者特定的三维模型。这些模型在数字化牙科工作流程中具有多种用途,例如可视化、治疗计划、干预和随访。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索