Suppr超能文献

针对使用锥形束计算机断层扫描研究肺癌恶病质放疗期间动态变化的全自动工作流程。

Towards a fully automatic workflow for investigating the dynamics of lung cancer cachexia during radiotherapy using cone beam computed tomography.

机构信息

Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.

Medical Image Analysis group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Phys Med Biol. 2024 Oct 4;69(20). doi: 10.1088/1361-6560/ad7d5b.

Abstract

Cachexia is a devastating condition, characterized by involuntary loss of muscle mass with or without loss of adipose tissue mass. It affects more than half of patients with lung cancer, diminishing treatment effects and increasing mortality. Cone-beam computed tomography (CBCT) images, routinely acquired during radiotherapy treatment, might contain valuable anatomical information for monitoring body composition changes associated with cachexia. For this purpose, we propose an automatic artificial intelligence (AI)-based workflow, consisting of CBCT to CT conversion, followed by segmentation of pectoralis muscles.Data from 140 stage III non-small cell lung cancer patients was used. Two deep learning models, cycle-consistent generative adversarial network (CycleGAN) and contrastive unpaired translation (CUT), were used for unpaired training of CBCT to CT conversion, to generate synthetic CT (sCT) images. The no-new U-Net (nnU-Net) model was used for automatic pectoralis muscle segmentation. To evaluate tissue segmentation performance in the absence of ground truth labels, an uncertainty metric (UM) based on Monte Carlo dropout was developed and validated.Both CycleGAN and CUT restored the Hounsfield unit fidelity of the CBCT images compared to the planning CT (pCT) images and visually reduced streaking artefacts. The nnU-Net model achieved a Dice similarity coefficient (DSC) of 0.93, 0.94, 0.92 for the CT, sCT and CBCT images, respectively, on an independent test set. The UM showed a high correlation with DSC with a correlation coefficient of -0.84 for the pCT dataset and -0.89 for the sCT dataset.This paper shows a proof-of-concept for automatic AI-based monitoring of the pectoralis muscle area of lung cancer patients during radiotherapy treatment based on CBCT images, which provides an unprecedented time resolution of muscle mass loss during cachexia progression. Ultimately, the proposed workflow could provide valuable information for early intervention of cachexia, ideally resulting in improved cancer treatment outcome.

摘要

恶病质是一种破坏性的疾病,其特征是肌肉质量的非自愿性损失,伴有或不伴有脂肪组织质量的损失。它影响了超过一半的肺癌患者,降低了治疗效果并增加了死亡率。锥形束计算机断层扫描(CBCT)图像,在放射治疗过程中常规获取,可能包含有价值的解剖信息,用于监测与恶病质相关的身体成分变化。为此,我们提出了一种基于人工智能(AI)的自动工作流程,包括 CBCT 到 CT 的转换,然后对胸大肌进行分割。该研究使用了 140 名 III 期非小细胞肺癌患者的数据。使用了两种深度学习模型,循环一致生成对抗网络(CycleGAN)和对比无配对翻译(CUT),用于 CBCT 到 CT 转换的无配对训练,以生成合成 CT(sCT)图像。无新 U-Net(nnU-Net)模型用于自动胸大肌分割。为了在没有地面真实标签的情况下评估组织分割性能,开发并验证了一种基于蒙特卡罗丢弃的不确定性度量(UM)。与计划 CT(pCT)图像相比,CycleGAN 和 CUT 都恢复了 CBCT 图像的亨斯菲尔德单位保真度,并在视觉上减少了条纹伪影。nnU-Net 模型在独立测试集上分别实现了 CT、sCT 和 CBCT 图像的 Dice 相似系数(DSC)为 0.93、0.94、0.92。UM 与 DSC 高度相关,pCT 数据集的相关系数为-0.84,sCT 数据集的相关系数为-0.89。本文展示了一种基于 CBCT 图像的肺癌患者放射治疗期间自动 AI 监测胸大肌区域的概念验证,为恶病质进展过程中的肌肉质量损失提供了前所未有的时间分辨率。最终,所提出的工作流程可以为恶病质的早期干预提供有价值的信息,理想情况下可以改善癌症治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验