Suppr超能文献

一种新型风险评估工具的推导和内部验证,用于识别坦桑尼亚达累斯萨拉姆和利比里亚蒙罗维亚出院后死亡风险的婴儿和幼儿。

Derivation and Internal Validation of a Novel Risk Assessment Tool to Identify Infants and Young Children at Risk for Post-Discharge Mortality in Dar es Salaam, Tanzania and Monrovia, Liberia.

机构信息

Division of Pediatric Emergency Medicine, Emory University School of Medicine, Atlanta, GA; Department of Emergency Medicine, Children's Healthcare of Atlanta, Atlanta, GA.

Department of Pediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.

出版信息

J Pediatr. 2024 Oct;273:114147. doi: 10.1016/j.jpeds.2024.114147. Epub 2024 Jun 13.

Abstract

OBJECTIVE

To derive and validate internally a novel risk assessment tool to identify young children at risk for all-cause mortality ≤60 days of discharge from hospitals in sub-Saharan Africa.

STUDY DESIGN

We performed a prospective observational cohort study of children aged 1-59 months discharged from Muhimbili National Hospital in Dar es Salaam, Tanzania and John F. Kennedy Medical Center in Monrovia, Liberia (2019-2022). Caregivers received telephone calls up to 60 days after discharge to ascertain participant vital status. We collected socioeconomic, demographic, clinical, and anthropometric data during hospitalization. Candidate variables with P < .20 in bivariate analyses were included in a multivariable logistic regression model with best subset selection to identify risk factors for the outcome. We internally validated our tool using bootstrapping with 500 repetitions.

RESULTS

There were 1933 young children enrolled in the study. The median (IQR) age was 11 (4, 23) months and 58.7% were males. In total, 67 (3.5%) died during follow-up. Ten variables contributed to our tool (total possible score 82). Cancer (aOR 10.6, 95% CI 2.58, 34.6), pedal edema (aOR 6.94, 95% CI 1.69, 22.6), and leaving against medical advice (aOR 6.46, 95% CI 2.46, 15.3) were most predictive of post-discharge mortality. Our risk assessment tool demonstrated good discriminatory value (optimism corrected area under the receiver operating characteristic curve 0.77), high precision, and sufficient calibration.

CONCLUSIONS

After validation, this tool may be used to identify young children at risk for post-discharge mortality to direct resources for follow-up of high-risk children.

摘要

目的

开发并验证一种新的风险评估工具,以识别撒哈拉以南非洲医院出院后 60 天内全因死亡率风险较高的婴幼儿。

研究设计

我们对坦桑尼亚达累斯萨拉姆穆希比利国家医院和利比里亚蒙罗维亚约翰·肯尼迪医疗中心出院的 1-59 月龄儿童进行了前瞻性观察队列研究(2019-2022 年)。在出院后 60 天内,医护人员通过电话联系照顾者以确定参与者的生存状态。我们在住院期间收集了社会经济、人口统计学、临床和人体测量数据。在双变量分析中 P <.20 的候选变量被纳入多变量逻辑回归模型,使用最佳子集选择来确定结局的危险因素。我们使用 500 次重复的自举法对我们的工具进行内部验证。

结果

共有 1933 名婴幼儿参与了这项研究。中位数(IQR)年龄为 11(4,23)个月,58.7%为男性。总共有 67(3.5%)名儿童在随访期间死亡。有 10 个变量对我们的工具做出了贡献(总分为 82 分)。癌症(aOR 10.6,95%CI 2.58,34.6)、足踝水肿(aOR 6.94,95%CI 1.69,22.6)和不遵医嘱离院(aOR 6.46,95%CI 2.46,15.3)对出院后死亡率的预测作用最大。我们的风险评估工具具有良好的判别能力(经校正后的受试者工作特征曲线下面积为 0.77)、高精确度和足够的校准度。

结论

经过验证后,该工具可用于识别出院后死亡率风险较高的婴幼儿,以便为高危儿童的随访提供资源。

相似文献

9
Referral challenges and outcomes of neonates received at Muhimbili National Hospital, Dar es Salaam, Tanzania.
PLoS One. 2022 Jun 15;17(6):e0269479. doi: 10.1371/journal.pone.0269479. eCollection 2022.

引用本文的文献

1
Systematic review of risk assessment tools for post-discharge mortality among children in sub-Saharan Africa.
PLOS Glob Public Health. 2025 Jul 1;5(7):e0004788. doi: 10.1371/journal.pgph.0004788. eCollection 2025.

本文引用的文献

1
Pediatric post-discharge mortality in resource-poor countries: a systematic review and meta-analysis.
EClinicalMedicine. 2023 Dec 21;67:102380. doi: 10.1016/j.eclinm.2023.102380. eCollection 2024 Jan.
2
4
Addressing the childhood cancer crisis in sub-Saharan Africa.
Lancet Oncol. 2023 Jul;24(7):729-732. doi: 10.1016/S1470-2045(23)00173-0.
6
Prognostic accuracy of biomarkers of immune and endothelial activation in Mozambican children hospitalized with pneumonia.
PLOS Glob Public Health. 2023 Feb 23;3(2):e0001553. doi: 10.1371/journal.pgph.0001553. eCollection 2023.
10
Prioritizing Health Care Strategies to Reduce Childhood Mortality.
JAMA Netw Open. 2022 Oct 3;5(10):e2237689. doi: 10.1001/jamanetworkopen.2022.37689.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验