Suppr超能文献

因果中介分析中的抽样加权策略。

Sampling weighting strategies in causal mediation analysis.

机构信息

Department of Psychology, University of South Carolina, 1512 Pendleton St., Columbia, 29208, USA.

Department of Epidemiology and Biostatistics, Temple University, Philadelphia, USA.

出版信息

BMC Med Res Methodol. 2024 Jun 15;24(1):133. doi: 10.1186/s12874-024-02262-x.

Abstract

BACKGROUND

Causal mediation analysis plays a crucial role in examining causal effects and causal mechanisms. Yet, limited work has taken into consideration the use of sampling weights in causal mediation analysis. In this study, we compared different strategies of incorporating sampling weights into causal mediation analysis.

METHODS

We conducted a simulation study to assess 4 different sampling weighting strategies-1) not using sampling weights, 2) incorporating sampling weights into mediation "cross-world" weights, 3) using sampling weights when estimating the outcome model, and 4) using sampling weights in both stages. We generated 8 simulated population scenarios comprising an exposure (A), an outcome (Y), a mediator (M), and six covariates (C), all of which were binary. The data were generated so that the true model of A given C and the true model of A given M and C were both logit models. We crossed these 8 population scenarios with 4 different sampling methods to obtain 32 total simulation conditions. For each simulation condition, we assessed the performance of 4 sampling weighting strategies when calculating sample-based estimates of the total, direct, and indirect effects. We also applied the four sampling weighting strategies to a case study using data from the National Survey on Drug Use and Health (NSDUH).

RESULTS

Using sampling weights in both stages (mediation weight estimation and outcome models) had the lowest bias under most simulation conditions examined. Using sampling weights in only one stage led to greater bias for multiple simulation conditions.

DISCUSSION

Using sampling weights in both stages is an effective approach to reduce bias in causal mediation analyses under a variety of conditions regarding the structure of the population data and sampling methods.

摘要

背景

因果中介分析在检验因果效应和因果机制方面起着至关重要的作用。然而,在因果中介分析中考虑使用抽样权重的工作有限。在这项研究中,我们比较了将抽样权重纳入因果中介分析的不同策略。

方法

我们进行了一项模拟研究,以评估纳入因果中介分析的 4 种不同抽样权重策略:1)不使用抽样权重,2)将抽样权重纳入中介“交叉世界”权重,3)在估计结果模型时使用抽样权重,4)在两个阶段都使用抽样权重。我们生成了 8 个模拟人群场景,包括暴露(A)、结果(Y)、中介(M)和 6 个协变量(C),所有这些都是二项式的。数据的生成方式使得 A 给定 C 的真实模型和 A 给定 M 和 C 的真实模型都是对数模型。我们将这 8 个人群场景与 4 种不同的抽样方法交叉,得到 32 种总模拟条件。对于每种模拟条件,我们评估了在计算基于样本的总效应、直接效应和间接效应的样本时,4 种抽样权重策略的表现。我们还将这四种抽样权重策略应用于使用国家药物使用与健康调查(NSDUH)数据的案例研究。

结果

在大多数检查的模拟条件下,在两个阶段(中介权重估计和结果模型)中使用抽样权重具有最低的偏差。仅在一个阶段使用抽样权重会导致多个模拟条件的偏差更大。

讨论

在各种人群数据结构和抽样方法条件下,在两个阶段(中介权重估计和结果模型)中使用抽样权重是减少因果中介分析偏差的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/474f/11179247/7f90a3e928a0/12874_2024_2262_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验