Marchhart Trevor, Hargrove Chase, Marin Alexandru, Schamis Hanna, Saefan Ashrakat, Lang Eric, Wang Xing, Allain Jean Paul
Ken and Mary Alice Department of Nuclear Engineering, Pennsylvania State University, University Park, PA, 16801, USA.
Surface Analysis Laboratory, Institute for Nuclear Research Pitesti, 115400, Mioveni, Romania.
Sci Rep. 2024 Jun 15;14(1):13864. doi: 10.1038/s41598-024-64614-3.
Despite of excellent thermal properties and high sputtering resistance, pure tungsten cannot fully satisfy the requirements for plasma facing materials in future high-duty cycle nuclear fusion reactions due to the coupled extreme environments, including the high thermal loads, plasma exposure, and radiation damage. Here, we demonstrated that tungsten-based composite materials fabricated using spark-plasma sintering (SPS) present promising solutions to these challenges. Through the examination of two model systems, i.e., tungsten-zirconium composite for producing porous tungsten near the surface and dispersoid-strengthened tungsten, we discussed both the strengths and limitations of the SPS-fabricated materials. Our findings point towards the need for future studies aimed at optimizing the SPS process to achieve desired microstructures and effective control of oxygen impurities in the tungsten-based composite materials.
尽管纯钨具有优异的热性能和高抗溅射性,但由于其面临的极端耦合环境,包括高热负荷、等离子体暴露和辐射损伤,在未来高占空比核聚变反应中,纯钨无法完全满足面向等离子体材料的要求。在此,我们证明了使用放电等离子体烧结(SPS)制备的钨基复合材料有望应对这些挑战。通过对两个模型系统的研究,即用于在表面附近制备多孔钨的钨锆复合材料和弥散强化钨,我们讨论了SPS制备材料的优点和局限性。我们的研究结果表明,未来需要开展研究,旨在优化SPS工艺,以实现所需的微观结构,并有效控制钨基复合材料中的氧杂质。