He Jiarui, Bhargav Amruth, Okasinski John, Manthiram Arumugam
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA.
Adv Mater. 2024 Aug;36(33):e2403521. doi: 10.1002/adma.202403521. Epub 2024 Jun 23.
Sodium-ion batteries (SIBs) are entering commercial relevance as a sustainable and low-cost alternative to lithium-ion batteries. Improving the energy density of SIBs is critical to enable their widespread adoption. Here, a new class of cathode materials NaMS (M = Co, Mn, Fe, and Zn) that exhibit high charge-storage capacity is reported. Using NaCoS as a prototypical example, a six-electron conversion reaction dominated by anion redox is observed, confirmed through various electrochemical and spectroscopic techniques. After the initial cycle, NaCoS delivers a high capacity of 392 mA h g with a long lifespan of over 500 cycles. The reaction involves, initially, the transformation of crystalline NaCoS to a nearly amorphous structure consisting of mainly CoS and sulfur nanoparticles, which then reversibly cycles between nearly amorphous a-CoS/S and a-NaCoS. Such anion-redox-driven conversion-type cathodes hold the potential to enable energy-dense, stable SIBs.
钠离子电池(SIBs)作为锂离子电池的一种可持续且低成本的替代品,正进入商业应用阶段。提高钠离子电池的能量密度对于其广泛应用至关重要。在此,报道了一类新型的具有高电荷存储容量的阴极材料NaMS(M = Co、Mn、Fe和Zn)。以NaCoS作为典型示例,观察到由阴离子氧化还原主导的六电子转换反应,并通过各种电化学和光谱技术得到证实。在首次循环后,NaCoS具有392 mA h g的高容量以及超过500次循环的长寿命。该反应最初涉及结晶态的NaCoS转变为主要由CoS和硫纳米颗粒组成的近无定形结构,然后在近无定形的a-CoS/S和a-NaCoS之间可逆循环。这种由阴离子氧化还原驱动的转换型阴极具有实现高能量密度、稳定的钠离子电池的潜力。