Meng Kong, Long Run
College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.
JACS Au. 2025 Jul 23;5(8):3833-3845. doi: 10.1021/jacsau.5c00526. eCollection 2025 Aug 25.
Graph neural networks for crystal property prediction typically require precise atomic positions and types, limiting their applicability for novel materials with unknown structures. To address this limitation, we introduce BatteryFormer, a versatile machine learning model that employs average interatomic radius distance instead of precise bond lengths as edge embedding, enabling rapid, high-throughput material screening based solely on composition and structural prototypes. BatteryFormer demonstrates robust predictive performance across a wide range of intervals. It accurately predicted high redox potentials for four distinct cathode materials: layered oxides, fluorophosphate salts, vanadium fluorophosphate salts, and ferric pyrophosphate salts. Notably, it also correctly predicted the low redox potential (1.56 V) of the recently reported cathode material NaCoS, highlighting its reliability in diverse chemical spaces. Beyond numerical accuracy, BatteryFormer captures crucial local structural features, such as the linear Na-O-Li configuration in layered transition metal oxide cathodes, essential for enhancing redox potentials. The model also maintains high predictive accuracy for a variety of lithium-ion battery cathode materials, further validating its strong generalization capability. Integrating knowledge graphs and knowledge inference, this work provides a visual mapping of relationships among material types, doping element combinations, doping ratios, redox potentials, capacities, and energy densities. This integration offers practical guidance for synthesizing high-entropy sodium-ion battery cathodes with enhanced cycling stability and energy density. The proposed data-driven approach provides a robust framework for accelerating materials discovery and transitioning from empirical materials design strategies.
用于晶体性质预测的图神经网络通常需要精确的原子位置和类型,这限制了它们对结构未知的新型材料的适用性。为了解决这一限制,我们引入了BatteryFormer,这是一种通用的机器学习模型,它采用平均原子间半径距离而非精确的键长作为边嵌入,从而能够仅基于组成和结构原型进行快速、高通量的材料筛选。BatteryFormer在很宽的区间内都表现出强大的预测性能。它准确地预测了四种不同阴极材料的高氧化还原电位:层状氧化物、氟磷酸盐、钒氟磷酸盐和焦磷酸铁盐。值得注意的是,它还正确地预测了最近报道的阴极材料NaCoS的低氧化还原电位(1.56 V),突出了其在不同化学空间中的可靠性。除了数值准确性,BatteryFormer还捕捉到了关键的局部结构特征,例如层状过渡金属氧化物阴极中线性的Na-O-Li构型,这对于提高氧化还原电位至关重要。该模型对多种锂离子电池阴极材料也保持着较高的预测准确性,进一步验证了其强大的泛化能力。通过整合知识图谱和知识推理,这项工作提供了材料类型、掺杂元素组合、掺杂比例、氧化还原电位、容量和能量密度之间关系的可视化映射。这种整合为合成具有更高循环稳定性和能量密度的高熵钠离子电池阴极提供了实际指导。所提出的数据驱动方法为加速材料发现以及从经验性材料设计策略的转变提供了一个强大的框架。