Aspegren Markus, Chergui Lila, Marnauza Mikelis, Debbarma Rousan, Bengtsson Jakob, Lehmann Sebastian, Dick Kimberly A, Reimann Stephanie M, Thelander Claes
Solid State Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden.
Mathematical Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden.
Nano Lett. 2024 Jul 3;24(26):7927-7933. doi: 10.1021/acs.nanolett.4c01247. Epub 2024 Jun 17.
In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin-orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin-orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin-orbital states.
在具有旋转对称性的纳米级结构中,如量子环,电子的轨道运动与自旋 - 轨道相互作用相结合可以产生非常强且各向异性的塞曼效应。由于对称性对电场敏感,环状几何结构提供了在极其广泛的范围内操纵磁性质的机会。在这项工作中,我们表明在半导体量子点内部形成旋转对称的限制势是可能的,从而产生具有大轨道角动量和强自旋 - 轨道相互作用的电子轨道。我们发现,对于施加在量子点平面内的磁场,塞曼自旋分裂完全被抑制,这类似于理想量子环的预期行为。当轨道相互作用被破坏对称性的电场激活时,自旋分裂重新出现。对于代表自旋量子比特常见基础的两个价电子,我们发现调节旋转对称性可能为实现自旋 - 轨道态的可调谐保护和相互作用提供新的前景。