LISTD Laboratory, Mines School of Rabat, Rabat 10000, Morocco; Cheikh Zaïd Foundation Medical Simulation Center, Rabat 10000, Morocco.
LISTD Laboratory, Mines School of Rabat, Rabat 10000, Morocco.
Surv Ophthalmol. 2024 Sep-Oct;69(5):707-721. doi: 10.1016/j.survophthal.2024.05.008. Epub 2024 Jun 15.
Diabetic retinopathy (DR) poses a significant challenge in diabetes management, with its progression often asymptomatic until advanced stages. This underscores the urgent need for cost-effective and reliable screening methods. Consequently, the integration of artificial intelligence (AI) tools presents a promising avenue to address this need effectively. We provide an overview of the current state of the art results and techniques in DR screening using AI, while also identifying gaps in research for future exploration. By synthesizing existing database and pinpointing areas requiring further investigation, this paper seeks to guide the direction of future research in the field of automatic diabetic retinopathy screening. There has been a continuous rise in the number of articles detailing deep learning (DL) methods designed for the automatic screening of diabetic retinopathy especially by the year 2021. Researchers utilized various databases, with a primary focus on the IDRiD dataset. This dataset consists of color fundus images captured at an ophthalmological clinic situated in India. It comprises 516 images that depict various stages of DR and diabetic macular edema. Each of the chosen papers concentrates on various DR signs. Nevertheless, a significant portion primarily focused on detecting exudates, which remains insufficient to assess the overall presence of this disease. Various AI methods have been employed to identify DR signs. Among the chosen papers, 4.7 % utilized detection methods, 46.5 % employed classification techniques, 41.9 % relied on segmentation, and 7 % opted for a combination of classification and segmentation. Metrics calculated from 80 % of the articles employing preprocessing techniques demonstrated the significant benefits of this approach in enhancing results quality. In addition, multiple DL techniques, starting by classification, detection then segmentation. Researchers used mostly YOLO for detection, ViT for classification, and U-Net for segmentation. Another perspective on the evolving landscape of AI models for diabetic retinopathy screening lies in the increasing adoption of Convolutional Neural Networks for classification tasks and U-Net architectures for segmentation purposes; however, there is a growing realization within the research community that these techniques, while powerful individually, can be even more effective when integrated. This integration holds promise for not only diagnosing DR, but also accurately classifying its different stages, thereby enabling more tailored treatment strategies. Despite this potential, the development of AI models for DR screening is fraught with challenges. Chief among these is the difficulty in obtaining the high-quality, labeled data necessary for training models to perform effectively. This scarcity of data poses significant barriers to achieving robust performance and can hinder progress in developing accurate screening systems. Moreover, managing the complexity of these models, particularly deep neural networks, presents its own set of challenges. Additionally, interpreting the outputs of these models and ensuring their reliability in real-world clinical settings remain ongoing concerns. Furthermore, the iterative process of training and adapting these models to specific datasets can be time-consuming and resource-intensive. These challenges underscore the multifaceted nature of developing effective AI models for DR screening. Addressing these obstacles requires concerted efforts from researchers, clinicians, and technologists to develop new approaches and overcome existing limitations. By doing so, a full potential of AI may transform DR screening and improve patient outcomes.
糖尿病视网膜病变(DR)是糖尿病管理中的一个重大挑战,其进展通常在晚期才出现症状,这凸显了需要经济有效的可靠筛查方法。因此,人工智能(AI)工具的整合提供了一个有效的解决方案。我们提供了使用 AI 进行 DR 筛查的当前最新技术和方法的概述,同时确定了未来研究的空白领域。通过综合现有数据库和确定需要进一步研究的领域,本文旨在为自动糖尿病视网膜病变筛查领域的未来研究提供指导方向。
自 2021 年以来,详细描述深度学习(DL)方法用于自动筛查糖尿病视网膜病变的文章数量不断增加。研究人员利用了各种数据库,主要集中在 IDRiD 数据集上。该数据集包含在印度眼科诊所拍摄的彩色眼底图像。它由 516 张图像组成,描绘了 DR 和糖尿病性黄斑水肿的各个阶段。所选的每篇论文都集中在各种 DR 标志上。然而,很大一部分主要集中在检测渗出物上,这仍然不足以评估这种疾病的整体存在。各种 AI 方法已被用于识别 DR 标志。在所选论文中,4.7% 使用了检测方法,46.5% 使用了分类技术,41.9% 使用了分割,7% 则选择了分类和分割的组合。从 80%使用预处理技术的文章中计算得出的指标表明,这种方法在提高结果质量方面具有显著优势。此外,多种 DL 技术,从分类开始,然后是检测,最后是分割。研究人员主要使用 YOLO 进行检测,使用 ViT 进行分类,使用 U-Net 进行分割。另一个视角是,人工智能模型在糖尿病视网膜病变筛查方面的不断发展,在于卷积神经网络在分类任务中的应用以及 U-Net 架构在分割任务中的应用越来越多;然而,研究界越来越意识到,这些技术虽然本身很强大,但当它们集成时效果会更好。这种集成不仅有望用于诊断 DR,还可以准确地对其不同阶段进行分类,从而为制定更有针对性的治疗策略提供依据。尽管有这种潜力,但开发用于 DR 筛查的 AI 模型仍然存在挑战。其中最大的挑战是难以获得高质量、标记的数据,这些数据对于训练能够有效执行的模型是必要的。这种数据的缺乏对实现稳健的性能构成了重大障碍,并可能阻碍开发准确的筛查系统的进展。此外,管理这些模型的复杂性,特别是深度神经网络,也带来了自身的一系列挑战。此外,解释这些模型的输出并确保其在实际临床环境中的可靠性仍然是一个持续存在的问题。此外,这些模型针对特定数据集的训练和调整过程可能既耗时又资源密集。这些挑战突出了开发用于 DR 筛查的有效 AI 模型的多方面性质。应对这些障碍需要研究人员、临床医生和技术人员共同努力,开发新方法并克服现有局限性。只有这样,人工智能的全部潜力才能改变糖尿病视网膜病变的筛查方式,并改善患者的治疗效果。