Naturalis Biodiversity Center, Marine Biodiversity Group, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
Centrum Wiskunde en Informatica, Computational Imaging Group, Science Park 123, 1098 XG, Amsterdam, The Netherlands.
Sci Data. 2024 Jun 17;11(1):642. doi: 10.1038/s41597-024-03476-w.
This paper introduces ForametCeTera, a pioneering dataset designed to address the challenges associated with automating the analysis of benthic foraminifera in sediment cores. Foraminifera are sensitive sentinels of environmental change and are a crucial component of carbonate-denominated ecosystems, such as coral reefs. Studying their prevalence and characteristics is imperative in understanding climate change. However, analysis of foraminifera contained in core samples currently requires washing, sieving and manual quantification. These methods are thus time-consuming and require trained experts. To overcome these limitations, we propose an alternative workflow utilizing 3D X-ray computational tomography (CT) for fully automated analysis, saving time and resources. Despite recent advancements in automation, a crucial lack of methods persists for segmenting and classifying individual foraminifera from 3D scans. In response, we present ForametCeTera, a diverse dataset featuring 436 3D CT scans of individual foraminifera and non-foraminiferan material following a high-throughput scanning workflow. ForametCeTera serves as a foundational resource for generating synthetic digital core samples, facilitating the development of segmentation and classification methods of entire core sample CT scans.
本文介绍了 ForametCeTera,这是一个开创性的数据集,旨在解决自动化分析沉积物岩芯中底栖有孔虫所面临的挑战。有孔虫是环境变化的敏感哨兵,是珊瑚礁等以碳酸盐为基础的生态系统的重要组成部分。研究它们的普遍存在和特征对于了解气候变化至关重要。然而,目前对岩芯样本中包含的有孔虫的分析需要经过洗涤、筛选和手动量化。因此,这些方法既耗时又需要经过培训的专家。为了克服这些限制,我们提出了一种利用 3D X 射线计算机断层扫描(CT)进行全自动分析的替代工作流程,从而节省时间和资源。尽管自动化技术最近取得了进展,但对于从 3D 扫描中分割和分类单个有孔虫,仍然存在一个关键的方法缺失。针对这个问题,我们提出了 ForametCeTera,这是一个多样化的数据集,包含了 436 个经过高通量扫描工作流程的单个有孔虫和非有孔虫物质的 3D CT 扫描。ForametCeTera 是生成合成数字岩芯样本的基础资源,有助于开发整个岩芯样本 CT 扫描的分割和分类方法。