Suppr超能文献

基于皮肤阻抗传感器和基于注意力的深度学习的早期脂肪肝的无创检测。

Non-Invasive Detection of Early-Stage Fatty Liver Disease via an On-Skin Impedance Sensor and Attention-Based Deep Learning.

机构信息

Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.

Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA.

出版信息

Adv Sci (Weinh). 2024 Aug;11(31):e2400596. doi: 10.1002/advs.202400596. Epub 2024 Jun 17.

Abstract

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.

摘要

早期非酒精性脂肪性肝病(NAFLD)是一种无声的疾病,大多数情况下未被诊断出来,可能会发展为肝硬化和肝癌。因此,开发一种非侵入性且具有成本效益的早期 NAFLD 检测方法是公共卫生的当务之急,但极具挑战性。在本研究中,我们制备了一种具有低电极-皮肤接触阻抗的粘性、柔软的贴肤传感器,用于早期 NAFLD 检测。我们开发了一种将铂纳米粒子和还原氧化石墨烯量子点合成到贴肤传感器上的方法,通过增加双层电容来降低电极-皮肤接触阻抗,从而提高检测准确性。此外,我们引入了一种基于注意力的深度学习算法,以区分高脂肪饮食喂养的低密度脂蛋白受体敲除(Ldlr)小鼠与健康对照之间与早期 NAFLD 相关的阻抗信号。将具有低电极-皮肤接触阻抗的粘性、柔软的贴肤传感器与基于注意力的深度学习算法相结合,显著提高了早期 NAFLD 的检测准确性,其接受者操作特征曲线(ROC)下面积(AUC)达到 1.0 时,准确率超过 97.5%。这些发现为早期 NAFLD 的非侵入性检测提供了一种新方法,并展示了通过贴肤电子设备和深度学习进行早期检测的改进策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43cf/11336938/de18c7cfb8fe/ADVS-11-2400596-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验