文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于宫颈癌多模态成像引导光动力/光热/化学动力学治疗的肿瘤细胞靶向和肿瘤微环境响应型纳米平台。

Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer.

机构信息

Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People's Republic of China.

Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China.

出版信息

Int J Nanomedicine. 2024 Jun 13;19:5837-5858. doi: 10.2147/IJN.S466042. eCollection 2024.


DOI:10.2147/IJN.S466042
PMID:38887692
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11182360/
Abstract

PURPOSE: Phototherapy, known for its high selectivity, few side effects, strong controllability, and synergistic enhancement of combined treatments, is widely used in treating diseases like cervical cancer. METHODS: In this study, hollow mesoporous manganese dioxide was used as a carrier to construct positively charged, poly(allylamine hydrochloride)-modified nanoparticles (NPs). The NP was efficiently loaded with the photosensitizer indocyanine green (ICG) via the addition of hydrogen phosphate ions to produce a counterion aggregation effect. HeLa cell membrane encapsulation was performed to achieve the final M-HMnO@ICG NP. In this structure, the HMnO carrier responsively degrades to release ICG in the tumor microenvironment, self-generates O for sensitization to ICG-mediated photodynamic therapy (PDT), and consumes GSH to expand the oxidative stress therapeutic effect [chemodynamic therapy (CDT) + PDT]. The ICG accumulated in tumor tissues exerts a synergistic PDT/photothermal therapy (PTT) effect through single laser irradiation, improving efficiency and reducing side effects. The cell membrane encapsulation increases nanomedicine accumulation in tumor tissues and confers an immune evasion ability. In addition, high local temperatures induced by PTT can enhance CDT. These properties of the NP enable full achievement of PTT/PDT/CDT and targeted effects. RESULTS: Mn can serve as a magnetic resonance imaging agent to guide therapy, and ICG can be used for photothermal and fluorescence imaging. After its intravenous injection, M-HMnO@ICG accumulated effectively at mouse tumor sites; the optimal timing of in-vivo laser treatment could be verified by near-infrared fluorescence, magnetic resonance, and photothermal imaging. The M-HMnO@ICG NPs had the best antitumor effects among treatment groups under near-infrared light conditions, and showed good biocompatibility. CONCLUSION: In this study, we designed a nano-biomimetic delivery system that improves hypoxia, responds to the tumor microenvironment, and efficiently loads ICG. It provides a new economical and convenient strategy for synergistic phototherapy and CDT for cervical cancer.

摘要

目的:光疗以其高选择性、副作用少、可控性强、协同增强联合治疗等特点,被广泛应用于宫颈癌等疾病的治疗。

方法:本研究以中空介孔二氧化锰为载体,构建带正电荷的聚(盐酸烯丙胺)修饰的纳米颗粒(NPs)。通过添加磷酸氢根离子产生抗衡离子聚集效应,将光敏剂吲哚菁绿(ICG)高效负载到 NP 中。采用 HeLa 细胞膜包封,得到最终的 M-HMnO@ICG NP。在这种结构中,HMnO 载体响应性降解,在肿瘤微环境中释放 ICG,自身产生 O2 对 ICG 介导的光动力治疗(PDT)进行敏化,并消耗 GSH 以扩大氧化应激治疗效果[化学动力学治疗(CDT)+PDT]。肿瘤组织中积累的 ICG 通过单激光照射发挥协同 PDT/光热治疗(PTT)作用,提高效率,减少副作用。细胞膜包封增加了纳米药物在肿瘤组织中的积累,并赋予了免疫逃逸能力。此外,PTT 引起的局部高温可以增强 CDT。该纳米粒子的这些特性使其能够充分实现 PTT/PDT/CDT 和靶向作用。

结果:Mn 可以作为磁共振成像剂来指导治疗,ICG 可用于光热和荧光成像。静脉注射后,M-HMnO@ICG 有效地在小鼠肿瘤部位积累;近红外荧光、磁共振和光热成像可验证体内激光治疗的最佳时机。在近红外光条件下,M-HMnO@ICG NPs 组的治疗效果最佳,表现出良好的生物相容性。

结论:本研究设计了一种纳米仿生递药系统,可改善缺氧,响应肿瘤微环境,高效负载 ICG,为宫颈癌的协同光疗和 CDT 提供了一种新的经济便捷的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/4eef0966cf69/IJN-19-5837-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/bb924571d0c3/IJN-19-5837-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/356b7cc8b622/IJN-19-5837-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/60f849f5d2b7/IJN-19-5837-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/98b120d3efe3/IJN-19-5837-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/d78fc1ff448e/IJN-19-5837-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/423e0b963762/IJN-19-5837-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/de92d7f9df6c/IJN-19-5837-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/4eef0966cf69/IJN-19-5837-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/bb924571d0c3/IJN-19-5837-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/356b7cc8b622/IJN-19-5837-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/60f849f5d2b7/IJN-19-5837-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/98b120d3efe3/IJN-19-5837-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/d78fc1ff448e/IJN-19-5837-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/423e0b963762/IJN-19-5837-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/de92d7f9df6c/IJN-19-5837-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b13/11182360/4eef0966cf69/IJN-19-5837-g0008.jpg

相似文献

[1]
Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer.

Int J Nanomedicine. 2024

[2]
Multifunctional MnO/AgSbS Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow.

ACS Appl Mater Interfaces. 2022-2-2

[3]
Endogenous oxygen generating multifunctional theranostic nanoplatform for enhanced photodynamic-photothermal therapy and multimodal imaging.

Theranostics. 2019-10-15

[4]
Intelligent Tumor Microenvironment-Activated Multifunctional Nanoplatform Coupled with Turn-on and Always-on Fluorescence Probes for Imaging-Guided Cancer Treatment.

ACS Appl Mater Interfaces. 2021-11-17

[5]
Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy.

Acta Biomater. 2018-9-27

[6]
Tumor microenvironment-responsive size-changeable and biodegradable HA-CuS/MnO nanosheets for MR imaging and synergistic chemodynamic therapy/phototherapy.

Colloids Surf B Biointerfaces. 2024-6

[7]
Near-infrared light-triggered synergistic antitumor therapy based on hollow ZIF-67-derived CoS-indocyanine green nanocomplex as a superior reactive oxygen species generator.

Mater Sci Eng C Mater Biol Appl. 2021-11

[8]
MnO nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors.

Food Funct. 2021-7-21

[9]
Pd@Au Bimetallic Nanoplates Decorated Mesoporous MnO for Synergistic Nucleus-Targeted NIR-II Photothermal and Hypoxia-Relieved Photodynamic Therapy.

Adv Healthc Mater. 2020-1

[10]
Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents.

ACS Nano. 2019-2-11

引用本文的文献

[1]
Optimization of ivacaftor-loaded solid lipid nanoparticles for solubility enhancement.

Front Pharmacol. 2025-8-20

[2]
Phthalocyanine-nanoparticle conjugates for enhanced cancer photodynamic therapy.

RSC Adv. 2025-8-21

[3]
Pan-cancer analysis of PTPN6: prognostic significance and functional implications in tumor progression.

Discov Oncol. 2025-8-25

[4]
Advances in Photodynamic Treatment of Precancerous and Cancerous Gynecological Diseases.

Cancers (Basel). 2025-7-22

[5]
Designing Polymeric Multifunctional Nanogels for Photothermal Inactivation: Exploiting Conjugate Polymers and Thermoresponsive Platforms.

Pharmaceutics. 2025-6-25

[6]
PEGylated PLGA nanoparticles: unlocking advanced strategies for cancer therapy.

Mol Cancer. 2025-7-24

[7]
Light-activated multimodal nanoplatform for enhanced synergistic therapy of breast cancer.

Sci Rep. 2025-7-17

[8]
Anticancer and antibacterial activity of the cellulose nanocrystals modified by cyclodextrin and loaded by propolis.

Sci Rep. 2025-7-10

[9]
Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.

ACS Biomater Sci Eng. 2025-7-14

[10]
Optimized deep learning approach for lung cancer detection using flying fox optimization and bidirectional generative adversarial networks.

PeerJ Comput Sci. 2025-5-27

本文引用的文献

[1]
NCCN Guidelines® Insights: Cervical Cancer, Version 1.2024.

J Natl Compr Canc Netw. 2023-12

[2]
Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives.

Acta Biomater. 2024-1-15

[3]
Hyperthermia-triggered biomimetic bubble nanomachines.

Nat Commun. 2023-8-11

[4]
The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases.

Small. 2024-10

[5]
Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine.

ACS Nano. 2023-5-9

[6]
Intelligent PdBi@CeO Nanosystem with Dual-Enzyme-Mimetic Activities for Cancer Hypoxia Relief and Synergistic Photothermal/Photodynamic/Chemodynamic Therapy.

ACS Appl Mater Interfaces. 2023-5-10

[7]
A homologous and molecular dual-targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy.

Bioact Mater. 2023-4-19

[8]
Enzyme-Activatable Polypeptide for Plasma Membrane Disruption and Antitumor Immunity Elicitation.

Small. 2023-6

[9]
Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review.

Int J Nanomedicine. 2022

[10]
Analysis of risk factors for recurrence in cervical cancer patients after fertility-sparing treatment: The FERTIlity Sparing Surgery retrospective multicenter study.

Am J Obstet Gynecol. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索