Suppr超能文献

用于结直肠癌诊断的光声集成多模态方法

Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.

作者信息

Biswas Shimul, Chohan Diya Pratish, Wankhede Mrunmayee, Rodrigues Jackson, Bhat Ganesh, Mathew Stanley, Mahato Krishna Kishore

机构信息

Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.

Department of Life Science Informatics, b-it, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53113, Germany.

出版信息

ACS Biomater Sci Eng. 2025 Jul 14;11(7):4033-4049. doi: 10.1021/acsbiomaterials.5c00918. Epub 2025 Jul 1.

Abstract

Colorectal cancer remains a major global health challenge, emphasizing the need for advanced diagnostic tools that enable early and accurate detection. Photoacoustic (PA) spectroscopy, a hybrid technique combining optical absorption with acoustic resolution, is emerging as a powerful tool in cancer diagnostics. It detects biochemical changes in biomolecules within the tumor microenvironment, aiding early identification of malignancies. Integration with modalities, such as ultrasound (US), photoacoustic microscopy (PAM), and nanoparticle-enhanced imaging, enables detailed mapping of tissue structure, vascularity, and molecular markers. When combined with endoscopy and machine learning (ML) for data analysis, PA technology offers real-time, minimally invasive, and highly accurate detection of colorectal tumors. This approach supports tumor classification, therapy monitoring, and detecting features like hypoxia and tumor-associated bacteria. Recent studies integrating machine learning with PA imaging have demonstrated high diagnostic accuracy, achieving area under the curve (AUC) values up to 0.96 and classification accuracies exceeding 89%, highlighting its potential for precise, noninvasive colorectal cancer detection. Continued advancements in nanoparticle design, molecular targeting, and ML analytics position PA as a key tool for personalized colorectal cancer management.

摘要

结直肠癌仍然是一项重大的全球健康挑战,这凸显了对能够实现早期准确检测的先进诊断工具的需求。光声(PA)光谱技术是一种将光吸收与声学分辨率相结合的混合技术,正在成为癌症诊断中的一种强大工具。它能检测肿瘤微环境中生物分子的生化变化,有助于早期识别恶性肿瘤。与超声(US)、光声显微镜(PAM)和纳米颗粒增强成像等技术相结合,能够对组织结构、血管分布和分子标记物进行详细成像。当与内窥镜检查和机器学习(ML)相结合用于数据分析时,PA技术可实现对结直肠肿瘤的实时、微创且高度准确的检测。这种方法有助于肿瘤分类、治疗监测以及检测诸如缺氧和肿瘤相关细菌等特征。最近将机器学习与PA成像相结合的研究已证明具有很高的诊断准确性,曲线下面积(AUC)值高达0.96,分类准确率超过89%,凸显了其在精确、无创检测结直肠癌方面的潜力。纳米颗粒设计、分子靶向和ML分析方面的持续进展使PA成为个性化结直肠癌管理的关键工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验