Suppr超能文献

相似文献

1
SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution.
Cell Genom. 2024 Jul 10;4(7):100583. doi: 10.1016/j.xgen.2024.100583. Epub 2024 Jun 17.
2
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
4
The SpRY Cas9 variant release the PAM sequence constraint for genome editing in the model plant Physcomitrium patens.
Transgenic Res. 2024 Apr;33(1-2):67-74. doi: 10.1007/s11248-024-00381-1. Epub 2024 Apr 4.
5
PAM-Less CRISPR-SpRY Genome Editing in Plants.
Methods Mol Biol. 2023;2653:3-19. doi: 10.1007/978-1-0716-3131-7_1.
6
PAMless SpRY exhibits a preference for the seed region for efficient targeting.
Cell Rep. 2024 May 28;43(5):114225. doi: 10.1016/j.celrep.2024.114225. Epub 2024 May 10.
7
PAM-less plant genome editing using a CRISPR-SpRY toolbox.
Nat Plants. 2021 Jan;7(1):25-33. doi: 10.1038/s41477-020-00827-4. Epub 2021 Jan 4.
8
Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
Acta Biomater. 2022 Dec;154:597-607. doi: 10.1016/j.actbio.2022.10.015. Epub 2022 Oct 13.
9
SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
Trends Genet. 2020 Aug;36(8):546-548. doi: 10.1016/j.tig.2020.05.001. Epub 2020 May 23.
10
In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
Nucleic Acids Res. 2021 Sep 7;49(15):8785-8795. doi: 10.1093/nar/gkab507.

本文引用的文献

1
Integrative dissection of gene regulatory elements at base resolution.
Cell Genom. 2023 Apr 28;3(6):100318. doi: 10.1016/j.xgen.2023.100318. eCollection 2023 Jun 14.
2
Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens.
Science. 2023 May 19;380(6646):eadh7699. doi: 10.1126/science.adh7699.
3
Massively parallel base editing to map variant effects in human hematopoiesis.
Cell. 2023 May 25;186(11):2456-2474.e24. doi: 10.1016/j.cell.2023.03.035. Epub 2023 May 2.
4
CRISPR screens identify gene targets at breast cancer risk loci.
Genome Biol. 2023 Mar 29;24(1):59. doi: 10.1186/s13059-023-02898-w.
5
Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells.
PLoS Genet. 2023 Mar 16;19(3):e1010680. doi: 10.1371/journal.pgen.1010680. eCollection 2023 Mar.
6
Whole-genome functional characterization of RE1 silencers using a modified massively parallel reporter assay.
Cell Genom. 2022 Dec 16;3(1):100234. doi: 10.1016/j.xgen.2022.100234. eCollection 2023 Jan 11.
7
15 years of GWAS discovery: Realizing the promise.
Am J Hum Genet. 2023 Feb 2;110(2):179-194. doi: 10.1016/j.ajhg.2022.12.011. Epub 2023 Jan 11.
8
Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase.
Nat Biotechnol. 2023 Aug;41(8):1080-1084. doi: 10.1038/s41587-022-01595-6. Epub 2023 Jan 9.
9
Highly Efficient One-Step Tagging of Endogenous Genes in Primary Cells Using CRISPR-Cas Ribonucleoproteins.
CRISPR J. 2022 Dec;5(6):843-853. doi: 10.1089/crispr.2022.0046. Epub 2022 Nov 24.
10
Disease modeling by efficient genome editing using a near PAM-less base editor in vivo.
Nat Commun. 2022 Jun 15;13(1):3435. doi: 10.1038/s41467-022-31172-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验