Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
Manipulation of DNA by CRISPR-Cas enzymes requires the recognition of a protospacer-adjacent motif (PAM), limiting target site recognition to a subset of sequences. To remove this constraint, we engineered variants of Cas9 (SpCas9) to eliminate the NGG PAM requirement. We developed a variant named SpG that is capable of targeting an expanded set of NGN PAMs, and we further optimized this enzyme to develop a near-PAMless SpCas9 variant named SpRY (NRN and to a lesser extent NYN PAMs). SpRY nuclease and base-editor variants can target almost all PAMs, exhibiting robust activities on a wide range of sites with NRN PAMs in human cells and lower but substantial activity on those with NYN PAMs. Using SpG and SpRY, we generated previously inaccessible disease-relevant genetic variants, supporting the utility of high-resolution targeting across genome editing applications.
CRISPR-Cas 酶对 DNA 的操控需要识别原间隔邻近基序 (PAM),这将靶位点的识别限制在一小部分序列中。为了消除这种限制,我们对 Cas9(SpCas9)进行了工程改造,使其不再需要 NGG PAM。我们开发了一种名为 SpG 的变体,能够靶向一组扩展的 NGN PAMs,我们进一步优化了这种酶,开发了一种近乎无 PAM 的 SpCas9 变体,名为 SpRY(NRN,在较小程度上还有 NYN PAMs)。SpRY 核酸酶和碱基编辑器变体几乎可以靶向所有 PAMs,在人类细胞中,NRN PAMs 的广泛位点上表现出强大的活性,而 NYN PAMs 的活性虽低,但也相当可观。使用 SpG 和 SpRY,我们产生了以前无法获得的与疾病相关的遗传变异,这支持了在基因组编辑应用中进行高精度靶向的实用性。