Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China.
Am J Trop Med Hyg. 2024 Jun 18;111(2):259-266. doi: 10.4269/ajtmh.23-0388. Print 2024 Aug 7.
We aimed to assess the temporal epidemiological trends in tuberculosis (TB) by use of an advanced Theta method. The TB incidence data from Tianjin, Heilongjiang, Hubei, and Guangxi provinces in China, spanning January 2005 to December 2019, were extracted. We then constructed and compared various modeling approaches, including the seasonal autoregressive integrated moving average (SARIMA) model, the Theta model, the standard Theta model (STM), the dynamic optimized Theta model (DOTM), the dynamic standard Theta model (DSTM), and the optimized Theta model (OTM). During 2005-2019, these four provinces recorded a total of 2,068,399 TB cases. Analyses indicated that TB exhibited seasonality, with prominent peaks in spring and winter, and a slight downward trend was seen in incidence. In the Tianjin forecast, the OTM consistently demonstrated superior performance with the lowest values across metrics, including mean absolute deviation (0.159), mean absolute percentage error (7.032), root mean square error (0.21), mean error rate (0.068), and root mean square percentage error (0.093), compared with those of SARIMA (0.397, 16.654, 0.436, 0.169, and 0.179, respectively), Theta (0.166, 7.248, 0.231, 0.071, and 0.102, respectively), DOTM (0.169, 7.341, 0.234, 0.072, and 0.102, respectively), DSTM (0.169, 7.532, 0.203, 0.072, and 0.092, respectively), and STM (0.165, 7.218, 0.231, 0.070, and 0.101, respectively). Similar results were also observed in the other provinces, emphasizing the effectiveness of the OTM in estimating TB trends. Thus, the OTM may serve as a beneficial and effective tool for estimating the temporal epidemiological trends of TB.
我们旨在使用先进的θ方法评估结核病(TB)的时间流行病学趋势。提取了中国天津、黑龙江、湖北和广西四个省份 2005 年 1 月至 2019 年 12 月的 TB 发病率数据。然后,我们构建并比较了各种建模方法,包括季节性自回归综合移动平均(SARIMA)模型、θ模型、标准θ模型(STM)、动态优化θ模型(DOTM)、动态标准θ模型(DSTM)和优化θ模型(OTM)。在 2005-2019 年间,这四个省份共记录了 2068399 例 TB 病例。分析表明,TB 具有季节性,春季和冬季发病率较高,呈轻微下降趋势。在天津的预测中,OTM 始终表现出优异的性能,各项指标的数值最低,包括平均绝对偏差(0.159)、平均绝对百分比误差(7.032)、均方根误差(0.21)、平均误差率(0.068)和均方根百分比误差(0.093),与 SARIMA(0.397、16.654、0.436、0.169 和 0.179)、θ(0.166、7.248、0.231、0.071 和 0.102)、DOTM(0.169、7.341、0.234、0.071 和 0.102)、DSTM(0.169、7.532、0.203、0.071 和 0.092)和 STM(0.165、7.218、0.231、0.070 和 0.101)相比。在其他省份也观察到了类似的结果,这强调了 OTM 在估计 TB 趋势方面的有效性。因此,OTM 可能是一种有益且有效的工具,可用于估计 TB 的时间流行病学趋势。