Suppr超能文献

利用先进的θ法估计结核病发病率的时间流行病学趋势。

Estimating the Temporal Epidemiological Trends of Tuberculosis Incidence by Using an Advanced Theta Method.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China.

出版信息

Am J Trop Med Hyg. 2024 Jun 18;111(2):259-266. doi: 10.4269/ajtmh.23-0388. Print 2024 Aug 7.

Abstract

We aimed to assess the temporal epidemiological trends in tuberculosis (TB) by use of an advanced Theta method. The TB incidence data from Tianjin, Heilongjiang, Hubei, and Guangxi provinces in China, spanning January 2005 to December 2019, were extracted. We then constructed and compared various modeling approaches, including the seasonal autoregressive integrated moving average (SARIMA) model, the Theta model, the standard Theta model (STM), the dynamic optimized Theta model (DOTM), the dynamic standard Theta model (DSTM), and the optimized Theta model (OTM). During 2005-2019, these four provinces recorded a total of 2,068,399 TB cases. Analyses indicated that TB exhibited seasonality, with prominent peaks in spring and winter, and a slight downward trend was seen in incidence. In the Tianjin forecast, the OTM consistently demonstrated superior performance with the lowest values across metrics, including mean absolute deviation (0.159), mean absolute percentage error (7.032), root mean square error (0.21), mean error rate (0.068), and root mean square percentage error (0.093), compared with those of SARIMA (0.397, 16.654, 0.436, 0.169, and 0.179, respectively), Theta (0.166, 7.248, 0.231, 0.071, and 0.102, respectively), DOTM (0.169, 7.341, 0.234, 0.072, and 0.102, respectively), DSTM (0.169, 7.532, 0.203, 0.072, and 0.092, respectively), and STM (0.165, 7.218, 0.231, 0.070, and 0.101, respectively). Similar results were also observed in the other provinces, emphasizing the effectiveness of the OTM in estimating TB trends. Thus, the OTM may serve as a beneficial and effective tool for estimating the temporal epidemiological trends of TB.

摘要

我们旨在使用先进的θ方法评估结核病(TB)的时间流行病学趋势。提取了中国天津、黑龙江、湖北和广西四个省份 2005 年 1 月至 2019 年 12 月的 TB 发病率数据。然后,我们构建并比较了各种建模方法,包括季节性自回归综合移动平均(SARIMA)模型、θ模型、标准θ模型(STM)、动态优化θ模型(DOTM)、动态标准θ模型(DSTM)和优化θ模型(OTM)。在 2005-2019 年间,这四个省份共记录了 2068399 例 TB 病例。分析表明,TB 具有季节性,春季和冬季发病率较高,呈轻微下降趋势。在天津的预测中,OTM 始终表现出优异的性能,各项指标的数值最低,包括平均绝对偏差(0.159)、平均绝对百分比误差(7.032)、均方根误差(0.21)、平均误差率(0.068)和均方根百分比误差(0.093),与 SARIMA(0.397、16.654、0.436、0.169 和 0.179)、θ(0.166、7.248、0.231、0.071 和 0.102)、DOTM(0.169、7.341、0.234、0.071 和 0.102)、DSTM(0.169、7.532、0.203、0.071 和 0.092)和 STM(0.165、7.218、0.231、0.070 和 0.101)相比。在其他省份也观察到了类似的结果,这强调了 OTM 在估计 TB 趋势方面的有效性。因此,OTM 可能是一种有益且有效的工具,可用于估计 TB 的时间流行病学趋势。

相似文献

1
Estimating the Temporal Epidemiological Trends of Tuberculosis Incidence by Using an Advanced Theta Method.
Am J Trop Med Hyg. 2024 Jun 18;111(2):259-266. doi: 10.4269/ajtmh.23-0388. Print 2024 Aug 7.
3
Undernutrition as a risk factor for tuberculosis disease.
Cochrane Database Syst Rev. 2024 Jun 11;6(6):CD015890. doi: 10.1002/14651858.CD015890.pub2.
4
Use of a Seasonal Autoregressive Fractionally Integrated Moving Average Model for the Time Series Analysis of Human Brucellosis.
Zoonoses Public Health. 2025 Sep;72(6):534-543. doi: 10.1111/zph.13229. Epub 2025 Jun 24.
6
Dorsal Subluxation of the First Metacarpal During Thumb Flexion is an Indicator of Carpometacarpal Osteoarthritis Progression.
Clin Orthop Relat Res. 2023 Jun 1;481(6):1224-1237. doi: 10.1097/CORR.0000000000002575. Epub 2023 Mar 6.
7
8
Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults.
Cochrane Database Syst Rev. 2014 Jan 21;2014(1):CD009593. doi: 10.1002/14651858.CD009593.pub3.
9
Xpert MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance.
Cochrane Database Syst Rev. 2018 Aug 27;8(8):CD012768. doi: 10.1002/14651858.CD012768.pub2.
10
Non-surgical adjunctive interventions for accelerating tooth movement in patients undergoing orthodontic treatment.
Cochrane Database Syst Rev. 2023 Jun 20;6(6):CD010887. doi: 10.1002/14651858.CD010887.pub3.

本文引用的文献

1
Tuberculosis: a different way of doing things.
Lancet. 2023 Sep 16;402(10406):937. doi: 10.1016/S0140-6736(23)01955-4.
2
Association of air pollutants and meteorological factors with tuberculosis: a national multicenter ecological study in China.
Int J Biometeorol. 2023 Oct;67(10):1629-1641. doi: 10.1007/s00484-023-02524-1. Epub 2023 Aug 3.
3
Ending tuberculosis by 2030: understanding the transmission.
Lancet Reg Health West Pac. 2023 Jul 13;38:100851. doi: 10.1016/j.lanwpc.2023.100851. eCollection 2023 Sep.
4
Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management.
Front Cell Infect Microbiol. 2022 Sep 23;12:943545. doi: 10.3389/fcimb.2022.943545. eCollection 2022.
5
Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan.
PeerJ. 2022 Sep 21;10:e13117. doi: 10.7717/peerj.13117. eCollection 2022.
6
Time series analysis of rubella incidence in Chongqing, China using SARIMA and BPNN mathematical models.
J Infect Dev Ctries. 2022 Aug 30;16(8):1343-1350. doi: 10.3855/jidc.16475.
7
Comparison of SARIMA model and Holt-Winters model in predicting the incidence of Sjögren's syndrome.
Int J Rheum Dis. 2022 Nov;25(11):1263-1269. doi: 10.1111/1756-185X.14417. Epub 2022 Aug 12.
8
A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province, China.
Int J Environ Res Public Health. 2022 May 12;19(10):5910. doi: 10.3390/ijerph19105910.
9
Forecasting the monthly incidence of scarlet fever in Chongqing, China using the SARIMA model.
Epidemiol Infect. 2022 Apr 21;150:e90. doi: 10.1017/S0950268822000693.
10
Drug resistant tuberculosis: Current scenario and impending challenges.
Indian J Tuberc. 2022 Apr;69(2):227-233. doi: 10.1016/j.ijtb.2021.04.008. Epub 2021 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验