The University of Melbourne, Department of Mechanical Engineering, 3010, Melbourne, Australia.
Monash University, Faculty of Engineering, 3800, Melbourne, Australia.
Sci Data. 2024 Jun 18;11(1):646. doi: 10.1038/s41597-024-03444-4.
Numerous studies have explored the biomechanics and energetics of human walking, offering valuable insights into how we walk. However, prior studies focused on changing external factors (e.g., walking speed) and examined group averages and trends rather than individual adaptations in the presence of internal constraints (e.g., injury-related muscle weakness). To address this gap, this paper presents an open dataset of human walking biomechanics and energetics collected from 21 neurotypical young adults. To investigate the effects of internal constraints (reduced joint range of motion), the participants are both the control group (free walking) and the intervention group (constrained walking - left knee fully extended using a passive orthosis). Each subject walked on a dual-belt treadmill at three speeds (0.4, 0.8, and 1.1 m/s) and five step frequencies ( - 10% to 20% of their preferred frequency) for a total of 30 test conditions. The dataset includes raw and segmented data featuring ground reaction forces, joint motion, muscle activity, and metabolic data. Additionally, a sample code is provided for basic data manipulation and visualisation.
许多研究探索了人类行走的生物力学和能量学,为我们了解行走方式提供了有价值的见解。然而,先前的研究主要集中在改变外部因素(例如,行走速度),并检查群体平均值和趋势,而不是在存在内部限制(例如,与损伤相关的肌肉无力)的情况下的个体适应。为了解决这一差距,本文提供了一个从 21 名神经正常的年轻人收集的人类行走生物力学和能量学的开放数据集。为了研究内部限制(关节活动范围减小)的影响,参与者既是对照组(自由行走),也是干预组(使用被动矫形器将左膝完全伸直-受限行走)。每个受试者在双带跑步机上以三种速度(0.4、0.8 和 1.1 m/s)和五种步频(比他们的最佳步频快 10%至 20%)进行测试,共进行了 30 种测试条件。该数据集包括地面反作用力、关节运动、肌肉活动和代谢数据的原始和分段数据。此外,还提供了一个示例代码,用于基本数据处理和可视化。