Suppr超能文献

基于改进的MVSNet的增强多视图3D重建。

Enhanced multi view 3D reconstruction with improved MVSNet.

作者信息

Li Guangchen, Li Kefeng, Zhang Guangyuan, Zhu Zhenfang, Wang Peng, Wang Zhenfei, Fu Chen

机构信息

Shandong Jiaotong University, Haitang Road 5001, Jinan, 250357, China.

Shandong Zhengyuan Yeda Environmental Technology Co., Ltd., Jinan, 250101, China.

出版信息

Sci Rep. 2024 Jun 19;14(1):14106. doi: 10.1038/s41598-024-64805-y.

Abstract

Although 3D reconstruction has been widely used in many fields as a key component of environment perception, existing technologies still have the potential for further improvement in 3D scene reconstruction. We propose an improved reconstruction algorithm based on the MVSNet network architecture. To glean richer pixel details from images, we suggest deploying a DE module integrated with a residual framework, which supplants the prevailing feature extraction mechanism. The DE module uses ECA-Net and dilated convolution to expand the receptive field range, performing feature splicing and fusion through the residual structure to retain the global information of the original image. Moreover, harnessing attention mechanisms refines the 3D cost volume's regularization process, bolstering the integration of information across multi-scale feature volumes, consequently enhancing depth estimation precision. When assessed our model using the DTU dataset, findings highlight the network's 3D reconstruction scoring a completeness (comp) of 0.411 mm and an overall quality of 0.418 mm. This performance is higher than that of traditional methods and other deep learning-based methods. Additionally, the visual representation of the point cloud model exhibits marked advancements. Trials on the Blended MVS dataset signify that our network exhibits commendable generalization prowess.

摘要

尽管三维重建作为环境感知的关键组成部分已在许多领域得到广泛应用,但现有技术在三维场景重建方面仍有进一步改进的潜力。我们提出了一种基于MVSNet网络架构的改进重建算法。为了从图像中获取更丰富的像素细节,我们建议部署一个集成了残差框架的DE模块,以取代现有的特征提取机制。DE模块使用ECA-Net和空洞卷积来扩大感受野范围,通过残差结构进行特征拼接和融合,以保留原始图像的全局信息。此外,利用注意力机制优化三维代价体的正则化过程,加强跨多尺度特征体的信息整合,从而提高深度估计精度。当使用DTU数据集评估我们的模型时,结果表明该网络的三维重建完整性(comp)为0.411毫米,整体质量为0.418毫米。这一性能高于传统方法和其他基于深度学习的方法。此外,点云模型的视觉表现有显著进步。在混合MVS数据集上的试验表明,我们的网络具有出色的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911a/11189500/c27dfa3b7e05/41598_2024_64805_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验