Suppr超能文献

用于防伪和发光二极管的具有水稳定性和颜色可调性的 CsPbX/聚丙烯腈纳米纤维的原位合成

In Situ Synthesis of CsPbX/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs.

作者信息

Shi Yinbiao, Su Xiaojia, Wang Xiaoyan, Ding Mingye

机构信息

College of Science, Nanjing Forestry University, Nanjing 210037, China.

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.

出版信息

Polymers (Basel). 2024 Jun 1;16(11):1568. doi: 10.3390/polym16111568.

Abstract

Inorganic CsPbX (X = Cl, Br, I) perovskite quantum dots (PQDs) have attracted widespread attention due to their excellent optical properties and extensive application prospects. However, their inherent structural instability significantly hinders their practical application despite their outstanding optical performance. To enhance stability, an in situ electrospinning strategy was used to synthesize CsPbX/polyacrylonitrile composite nanofibers. By optimizing process parameters (e.g., halide ratio, electrospinning voltage, and heat treatment temperature), all-inorganic CsPbX PQDs have been successfully grown in a polyacrylonitrile (PAN) matrix. During the electrospinning process, the rapid solidification of electrospun fibers not only effectively constrained the formation of large-sized PQDs but also provided effective physical protection for PQDs, resulting in the improvement in the water stability of PQDs by minimizing external environmental interference. Even after storage in water for over 100 days, the PQDs maintained approximately 93.5% of their photoluminescence intensity. Through the adjustment of halogen elements, the as-obtained composite nanofibers exhibited color-tunable luminescence in the visible light region, and based on this, a series of multicolor anti-counterfeiting patterns were fabricated. Additionally, benefiting from the excellent water stability and optical performance, the CsPbBr/PAN composite film was combined with red-emitting KSiF:Mn (KSF) on a blue LED (460 nm), producing a stable and efficient WLED device with a color temperature of around 6000 K and CIE coordinates of (0.318, 0.322). These results provide a general approach to synthesizing PQDs/polymer nanocomposites with excellent water stability and multicolor emission, thereby promoting their practical applications in multifunctional optoelectronic devices and advanced anti-counterfeiting.

摘要

无机CsPbX(X = Cl、Br、I)钙钛矿量子点(PQDs)因其优异的光学性能和广阔的应用前景而受到广泛关注。然而,尽管它们具有出色的光学性能,但其固有的结构不稳定性严重阻碍了它们的实际应用。为了提高稳定性,采用原位静电纺丝策略合成了CsPbX/聚丙烯腈复合纳米纤维。通过优化工艺参数(如卤化物比例、静电纺丝电压和热处理温度),全无机CsPbX PQDs已成功生长在聚丙烯腈(PAN)基质中。在静电纺丝过程中,电纺纤维的快速固化不仅有效地抑制了大尺寸PQDs的形成,还为PQDs提供了有效的物理保护,通过最小化外部环境干扰提高了PQDs的水稳定性。即使在水中储存超过100天后,PQDs仍保持其光致发光强度的约93.5%。通过调整卤素元素,所获得的复合纳米纤维在可见光区域表现出颜色可调的发光,并基于此制备了一系列多色防伪图案。此外,受益于优异的水稳定性和光学性能,CsPbBr/PAN复合薄膜与发红光的KSiF:Mn(KSF)在蓝色发光二极管(460 nm)上结合,制备出了色温和CIE坐标分别约为6000 K和(0.318, 0.322)的稳定高效的白光发光二极管器件。这些结果提供了一种合成具有优异水稳定性和多色发射的PQDs/聚合物纳米复合材料的通用方法,从而促进了它们在多功能光电器件和先进防伪中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3765/11174623/328276fe8484/polymers-16-01568-g001.jpg

相似文献

3
Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light.
ACS Appl Mater Interfaces. 2017 Sep 27;9(38):33020-33028. doi: 10.1021/acsami.7b10612. Epub 2017 Sep 15.
6
Highly stable and water-soluble monodisperse CsPbX/SiO nanocomposites for white-LED and cells imaging.
Nanotechnology. 2018 Aug 24;29(34):345703. doi: 10.1088/1361-6528/aac84d. Epub 2018 May 29.
8
Ligand Engineering of Inorganic Lead Halide Perovskite Quantum Dots toward High and Stable Photoluminescence.
Nanomaterials (Basel). 2024 Jul 15;14(14):1201. doi: 10.3390/nano14141201.
9
Enhancing the stability of CsPbX (X = Br, I) through combination with Y-zeolites for WLED application.
Dalton Trans. 2021 Nov 30;50(46):17281-17289. doi: 10.1039/d1dt03409j.

本文引用的文献

1
Stability Enhancement in All-Inorganic Perovskite Light Emitting Diodes via Dual Encapsulation.
Small. 2024 Jul;20(28):e2310478. doi: 10.1002/smll.202310478. Epub 2024 Feb 9.
2
Perovskite-Nanocrystal-Doped Cellulose Nanocrystal Ligands for Electrospun Nanofibers with Excellent Stability.
Small. 2023 Jun;19(23):e2207685. doi: 10.1002/smll.202207685. Epub 2023 Mar 10.
3
Large-area waterproof and durable perovskite luminescent textiles.
Nat Commun. 2023 Jan 16;14(1):234. doi: 10.1038/s41467-023-35830-8.
4
Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand-Free Perovskite Quantum Dots.
Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202204371. doi: 10.1002/anie.202204371. Epub 2022 May 3.
6
Three-dimensional direct lithography of stable perovskite nanocrystals in glass.
Science. 2022 Jan 21;375(6578):307-310. doi: 10.1126/science.abj2691. Epub 2022 Jan 20.
7
Perovskite Quantum Dots Encapsulated in a Mesoporous Metal-Organic Framework as Synergistic Photocathode Materials.
J Am Chem Soc. 2021 Sep 8;143(35):14253-14260. doi: 10.1021/jacs.1c05907. Epub 2021 Aug 30.
8
Air Stable Organic-Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing.
Small. 2020 Oct;16(43):e2004409. doi: 10.1002/smll.202004409. Epub 2020 Oct 1.
9
Hydrochromic CsPbBr Nanocrystals for Anti-Counterfeiting.
Angew Chem Int Ed Engl. 2020 Aug 17;59(34):14527-14532. doi: 10.1002/anie.202005120. Epub 2020 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验