Suppr超能文献

高效液相色谱法、高效薄层色谱法和计算脂水分配系数参数比较用于 5-杂环 2-(2,4-二羟基苯基)-1,3,4-噻二唑。

Comparison of HPLC, HPTLC, and In Silico Lipophilicity Parameters Determined for 5-Heterocyclic 2-(2,4-Dihydroxyphenyl)-1,3,4-thiadiazoles.

机构信息

Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.

Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland.

出版信息

Molecules. 2024 May 24;29(11):2478. doi: 10.3390/molecules29112478.

Abstract

The 5-heterocyclic 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles were obtained as potential biologically active compounds. Lipophilicity is one of the most important physicochemical properties of compounds and was already taken into account during the drug candidates design and development. The lipophilicity of compounds was determined using the computational (log P) and chromatography (log k, R) methods. The experimental ones included the reverse-phase column high performance liquid chromatography RP (HPLC) with C8, C18, phosphatidylcholine (IAM), and cholesterol stationary phases and the thin layer chromatography (RP-HPTLC) with C8 and C18 stationary phases and various organic modifiers under the isocratic conditions. Descriptive statistics, correlation, and PCA analyses were used to compare the obtained results. For lipophilicity estimation of the tested compounds by HPTLC, dioxane and MeOH seem to be particularly beneficial as organic modifiers. The chromatographic lipophilicity parameters log k (R) were well correlated and highly redundant (85%) compared with those calculated. Most compounds possess lipophilicity parameters within the recommended range for drug candidates.

摘要

5-杂环 2-(2,4-二羟基苯基)-1,3,4-噻二唑类化合物被认为是具有潜在生物活性的化合物。亲脂性是化合物最重要的物理化学性质之一,在候选药物的设计和开发过程中已经考虑到了这一点。使用计算(log P)和色谱(log k、R)方法来确定化合物的亲脂性。实验方法包括反相柱高效液相色谱 RP(HPLC),使用 C8、C18、磷脂酰胆碱(IA M)和胆固醇固定相,以及在等度条件下使用 C8 和 C18 固定相和各种有机改性剂的薄层色谱(RP-HPTLC)。使用描述性统计、相关性和 PCA 分析来比较获得的结果。对于用 HPTLC 测试化合物的亲脂性估计,二恶烷和甲醇似乎是特别有益的有机改性剂。与计算得到的参数相比,色谱亲脂性参数 log k(R)具有很好的相关性和高度的冗余性(85%)。大多数化合物的亲脂性参数都在候选药物的推荐范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验