Suppr超能文献

使用生物聚合物胶改善水基钻井泥浆性能:整合实验和机器学习技术

Improving Water-Based Drilling Mud Performance Using Biopolymer Gum: Integrating Experimental and Machine Learning Techniques.

作者信息

Murtaza Mobeen, Tariq Zeeshan, Kamal Muhammad Shahzad, Rana Azeem, Saleh Tawfik A, Mahmoud Mohamed, Alarifi Sulaiman A, Syed Nadeem Ahmed

机构信息

Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.

出版信息

Molecules. 2024 May 26;29(11):2512. doi: 10.3390/molecules29112512.

Abstract

Drilling through shale formations can be expensive and time-consuming due to the instability of the wellbore. Further, there is a need to develop inhibitors that are environmentally friendly. Our study discovered a cost-effective solution to this problem using Gum Arabic (ArG). We evaluated the inhibition potential of an ArG clay swelling inhibitor and fluid loss controller in water-based mud (WBM) by conducting a linear swelling test, capillary suction timer test, and zeta potential, fluid loss, and rheology tests. Our results displayed a significant reduction in linear swelling of bentonite clay (Na-Ben) by up to 36.1% at a concentration of 1.0 wt. % ArG. The capillary suction timer (CST) showed that capillary suction time also increased with the increase in the concentration of ArG, which indicates the fluid-loss-controlling potential of ArG. Adding ArG to the drilling mud prominently decreased fluid loss by up to 50%. Further, ArG reduced the shear stresses of the base mud, showing its inhibition and friction-reducing effect. These findings suggest that ArG is a strong candidate for an alternate green swelling inhibitor and fluid loss controller in WBM. Introducing this new green additive could significantly reduce non-productive time and costs associated with wellbore instability while drilling. Further, a dynamic linear swelling model, based on machine learning (ML), was created to forecast the linear swelling capacity of clay samples treated with ArG. The ML model proposed demonstrates exceptional accuracy (R score = 0.998 on testing) in predicting the swelling properties of ArG in drilling mud.

摘要

由于井眼的不稳定性,钻探页岩地层可能既昂贵又耗时。此外,需要开发对环境友好的抑制剂。我们的研究发现了一种使用阿拉伯胶(ArG)来解决这个问题的经济有效的方法。我们通过进行线性膨胀试验、毛细管吸入时间试验以及zeta电位、滤失和流变学试验,评估了ArG粘土膨胀抑制剂和滤失控制剂在水基泥浆(WBM)中的抑制潜力。我们的结果显示,在1.0 wt.% ArG的浓度下,膨润土(Na-Ben)的线性膨胀显著降低,最高可达36.1%。毛细管吸入时间(CST)表明,毛细管吸入时间也随着ArG浓度的增加而增加,这表明了ArG的滤失控制潜力。向钻井泥浆中添加ArG可显著降低滤失,最高可达50%。此外,ArG降低了基浆的剪切应力,显示出其抑制和减摩作用。这些发现表明,ArG是水基泥浆中替代绿色膨胀抑制剂和滤失控制剂的有力候选物。引入这种新的绿色添加剂可以显著减少与钻井时井眼不稳定相关的非生产时间和成本。此外,还创建了一个基于机器学习(ML)的动态线性膨胀模型,以预测用ArG处理的粘土样品的线性膨胀能力。所提出的ML模型在预测钻井泥浆中ArG的膨胀特性方面表现出极高的准确性(测试时R分数 = 0.998)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5cd/11173980/29c8b8a04ba3/molecules-29-02512-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验