Suppr超能文献

一种用于光催化/光电化学水分解制氢的CuZnSnS-锐钛矿混合纳米复合材料的便捷原位制备方法。

A Convenient In Situ Preparation of CuZnSnS-Anatase Hybrid Nanocomposite for Photocatalysis/Photoelectrochemical Water-Splitting Hydrogen Production.

作者信息

Li Ke-Xian, Li Cai-Hong, Shi Hao-Yan, Chen Rui, She Ao-Sheng, Yang Yang, Jiang Xia, Chen Yan-Xin, Lu Can-Zhong

机构信息

State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China.

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350108, China.

出版信息

Molecules. 2024 May 26;29(11):2514. doi: 10.3390/molecules29112514.

Abstract

This study details the rational design and synthesis of CuZnSnS (CZTS)-doped anatase (A) heterostructures, utilizing earth-abundant elements to enhance the efficiency of solar-driven water splitting. A one-step hydrothermal method was employed to fabricate a series of CZTS-A heterojunctions. As the concentration of titanium dioxide (TiO) varied, the morphology of CZTS shifted from floral patterns to sheet-like structures. The resulting CZTS-A heterostructures underwent comprehensive characterization through photoelectrochemical response assessments, optical measurements, and electrochemical impedance spectroscopy analyses. Detailed photoelectrochemical (PEC) investigations demonstrated notable enhancements in photocurrent density and incident photon-to-electron conversion efficiency (IPCE). Compared to pure anatase electrodes, the optimized CZTS-A heterostructures exhibited a seven-fold increase in photocurrent density and reached a hydrogen production efficiency of 1.1%. Additionally, the maximum H production rate from these heterostructures was 11-times greater than that of pure anatase and 250-times higher than the original CZTS after 2 h of irradiation. These results underscore the enhanced PEC performance of CZTS-A heterostructures, highlighting their potential as highly efficient materials for solar water splitting. Integrating CuZnSnS nanoparticles (NPs) within TiO (anatase) heterostructures implied new avenues for developing earth-abundant and cost-effective photocatalytic systems for renewable energy applications.

摘要

本研究详细介绍了铜锌锡硫(CZTS)掺杂锐钛矿(A)异质结构的合理设计与合成,利用地球上储量丰富的元素提高太阳能驱动水分解的效率。采用一步水热法制备了一系列CZTS-A异质结。随着二氧化钛(TiO₂)浓度的变化,CZTS的形态从花状转变为片状结构。通过光电化学响应评估、光学测量和电化学阻抗谱分析对所得的CZTS-A异质结构进行了全面表征。详细的光电化学(PEC)研究表明,光电流密度和入射光子到电子转换效率(IPCE)有显著提高。与纯锐钛矿电极相比,优化后的CZTS-A异质结构的光电流密度提高了7倍,产氢效率达到1.1%。此外,这些异质结构在光照2小时后的最大产氢速率比纯锐钛矿高11倍,比原始CZTS高250倍。这些结果强调了CZTS-A异质结构增强的PEC性能,突出了它们作为太阳能水分解高效材料的潜力。将铜锌锡硫纳米颗粒(NPs)整合到TiO₂(锐钛矿)异质结构中,为开发用于可再生能源应用的储量丰富且经济高效的光催化系统开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea2/11173519/d16f62069eb9/molecules-29-02514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验