Yang Ying, Ding Yaya, Zhang Jingyu, Liang Nina, Long Lizhen, Liu Jun
College of Physics Science and Technology & Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, China.
Nanomaterials (Basel). 2022 Apr 23;12(9):1439. doi: 10.3390/nano12091439.
In this work, CZTS particles with a mixed phase of wurtzite and kesterite were synthesized by the solvothermal method. The time-dependent XRD patterns, Raman spectra, SEM, and EDS analysis were employed to study the growth mechanism of CZTS. The results revealed that the formation of CZTS started from the nucleation of monoclinic CuS seeds, followed by the successive incorporation of Zn and Sn ions. Additionally, the diffusion of Zn into CuS crystal lattice is much faster than that of Sn. With increasing time, CZTS undergoes a phase transformation from metastable wurtzite to steady kesterite. The morphology of CZTS tends to change from spherical-like to flower-like architecture. The mixed-phase CZTS with a bandgap of 1.5 eV exhibited strong visible light absorption, good capability for photoelectric conversion, and suitable band alignment, which makes it capable to produce H production and degrade RhB under simulated solar illumination.
在本工作中,通过溶剂热法合成了具有纤锌矿和黄锡矿混合相的CZTS颗粒。利用随时间变化的XRD图谱、拉曼光谱、SEM和EDS分析来研究CZTS的生长机理。结果表明,CZTS的形成始于单斜CuS晶种的成核,随后依次掺入Zn和Sn离子。此外,Zn向CuS晶格中的扩散比Sn快得多。随着时间的增加,CZTS经历从亚稳纤锌矿到稳定黄锡矿的相变。CZTS的形态倾向于从类球形变为花状结构。带隙为1.5 eV的混合相CZTS表现出强烈的可见光吸收、良好的光电转换能力和合适的能带排列,这使其能够在模拟太阳光照下产生氢气并降解RhB。