使用深度学习提高乳腺密度评估的准确性:一项多中心、多读者研究。

Enhancing Accuracy in Breast Density Assessment Using Deep Learning: A Multicentric, Multi-Reader Study.

作者信息

Biroš Marek, Kvak Daniel, Dandár Jakub, Hrubý Robert, Janů Eva, Atakhanova Anora, Al-Antari Mugahed A

机构信息

Carebot, Ltd., 128 00 Prague, Czech Republic.

Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.

出版信息

Diagnostics (Basel). 2024 May 28;14(11):1117. doi: 10.3390/diagnostics14111117.

Abstract

The evaluation of mammographic breast density, a critical indicator of breast cancer risk, is traditionally performed by radiologists via visual inspection of mammography images, utilizing the Breast Imaging-Reporting and Data System (BI-RADS) breast density categories. However, this method is subject to substantial interobserver variability, leading to inconsistencies and potential inaccuracies in density assessment and subsequent risk estimations. To address this, we present a deep learning-based automatic detection algorithm (DLAD) designed for the automated evaluation of breast density. Our multicentric, multi-reader study leverages a diverse dataset of 122 full-field digital mammography studies (488 images in CC and MLO projections) sourced from three institutions. We invited two experienced radiologists to conduct a retrospective analysis, establishing a ground truth for 72 mammography studies (BI-RADS class A: 18, BI-RADS class B: 43, BI-RADS class C: 7, BI-RADS class D: 4). The efficacy of the DLAD was then compared to the performance of five independent radiologists with varying levels of experience. The DLAD showed robust performance, achieving an accuracy of 0.819 (95% CI: 0.736-0.903), along with an F1 score of 0.798 (0.594-0.905), precision of 0.806 (0.596-0.896), recall of 0.830 (0.650-0.946), and a Cohen's Kappa (κ) of 0.708 (0.562-0.841). The algorithm achieved robust performance that matches and in four cases exceeds that of individual radiologists. The statistical analysis did not reveal a significant difference in accuracy between DLAD and the radiologists, underscoring the model's competitive diagnostic alignment with professional radiologist assessments. These results demonstrate that the deep learning-based automatic detection algorithm can enhance the accuracy and consistency of breast density assessments, offering a reliable tool for improving breast cancer screening outcomes.

摘要

乳腺钼靶密度评估是乳腺癌风险的关键指标,传统上由放射科医生通过对乳腺钼靶图像进行目视检查来完成,采用乳腺影像报告和数据系统(BI-RADS)的乳腺密度分类。然而,这种方法存在显著的观察者间差异,导致密度评估及后续风险估计出现不一致和潜在的不准确。为解决这一问题,我们提出一种基于深度学习的自动检测算法(DLAD),用于乳腺密度的自动评估。我们的多中心、多阅片者研究利用了来自三个机构的122项全视野数字化乳腺钼靶研究(CC位和MLO位投影共488幅图像)的多样化数据集。我们邀请了两位经验丰富的放射科医生进行回顾性分析,为72项乳腺钼靶研究确定了真实情况(BI-RADS A类:18项,BI-RADS B类:43项,BI-RADS C类:7项,BI-RADS D类:4项)。然后将DLAD的效能与五位经验水平不同的独立放射科医生的表现进行比较。DLAD表现出色,准确率达到0.819(95%置信区间:0.736 - 0.903),F1分数为0.798(0.594 - 0.905),精确率为0.806(0.596 - 0.896),召回率为0.830(0.650 - 0.946),科恩卡方系数(κ)为0.708(0.562 - 0.841)。该算法表现出色,与个别放射科医生的表现相当,在四种情况下甚至超过了他们。统计分析未显示DLAD与放射科医生在准确率上有显著差异,这突出了该模型与专业放射科医生评估具有竞争力的诊断一致性。这些结果表明,基于深度学习的自动检测算法可以提高乳腺密度评估的准确性和一致性,为改善乳腺癌筛查结果提供了一个可靠的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a587/11172127/384acb928c94/diagnostics-14-01117-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索