Suppr超能文献

理解临床乳腺 X 线摄影乳房密度评估:深度学习视角。

Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.

机构信息

Department of Radiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA.

Department of Radiology, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Rd, Dadong District, Shenyang City, Liaoning Province, 110042, China.

出版信息

J Digit Imaging. 2018 Aug;31(4):387-392. doi: 10.1007/s10278-017-0022-2.

Abstract

Mammographic breast density has been established as an independent risk marker for developing breast cancer. Breast density assessment is a routine clinical need in breast cancer screening and current standard is using the Breast Imaging and Reporting Data System (BI-RADS) criteria including four qualitative categories (i.e., fatty, scattered density, heterogeneously dense, or extremely dense). In each mammogram examination, a breast is typically imaged with two different views, i.e., the mediolateral oblique (MLO) view and cranial caudal (CC) view. The BI-RADS-based breast density assessment is a qualitative process made by visual observation of both the MLO and CC views by radiologists, where there is a notable inter- and intra-reader variability. In order to maintain consistency and accuracy in BI-RADS-based breast density assessment, gaining understanding on radiologists' reading behaviors will be educational. In this study, we proposed to leverage the newly emerged deep learning approach to investigate how the MLO and CC view images of a mammogram examination may have been clinically used by radiologists in coming up with a BI-RADS density category. We implemented a convolutional neural network (CNN)-based deep learning model, aimed at distinguishing the breast density categories using a large (15,415 images) set of real-world clinical mammogram images. Our results showed that the classification of density categories (in terms of area under the receiver operating characteristic curve) using MLO view images is significantly higher than that using the CC view. This indicates that most likely it is the MLO view that the radiologists have predominately used to determine the breast density BI-RADS categories. Our study holds a potential to further interpret radiologists' reading characteristics, enhance personalized clinical training to radiologists, and ultimately reduce reader variations in breast density assessment.

摘要

乳腺密度已被确定为乳腺癌发生的独立危险因素。乳腺密度评估是乳腺癌筛查的常规临床需求,目前的标准是使用乳腺影像报告和数据系统(BI-RADS)标准,包括四个定性类别(即脂肪、散在密度、不均匀密度或极度密度)。在每次乳房 X 光检查中,乳房通常会通过两种不同的视图进行成像,即内外斜位(MLO)视图和头尾位(CC)视图。BI-RADS 基于的乳腺密度评估是放射科医生通过观察 MLO 和 CC 视图进行的定性过程,存在明显的读者间和读者内变异性。为了在 BI-RADS 基于的乳腺密度评估中保持一致性和准确性,了解放射科医生的阅读行为将具有教育意义。在这项研究中,我们提出利用新兴的深度学习方法来研究放射科医生在确定 BI-RADS 密度类别时,如何在乳房 X 光检查的 MLO 和 CC 视图图像中进行临床应用。我们实施了基于卷积神经网络(CNN)的深度学习模型,旨在使用大量(15415 张图像)真实临床乳房 X 光图像来区分乳腺密度类别。我们的结果表明,使用 MLO 视图图像进行密度类别分类(以接收者操作特征曲线下的面积为指标)显著高于使用 CC 视图图像。这表明,放射科医生很可能主要使用 MLO 视图来确定乳腺密度 BI-RADS 类别。我们的研究有潜力进一步解释放射科医生的阅读特征,增强对放射科医生的个性化临床培训,最终减少乳腺密度评估中的读者变异。

相似文献

1
Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
J Digit Imaging. 2018 Aug;31(4):387-392. doi: 10.1007/s10278-017-0022-2.
2
A deep learning method for classifying mammographic breast density categories.
Med Phys. 2018 Jan;45(1):314-321. doi: 10.1002/mp.12683. Epub 2017 Dec 22.
3
Automated mammographic breast density estimation using a fully convolutional network.
Med Phys. 2018 Mar;45(3):1178-1190. doi: 10.1002/mp.12763. Epub 2018 Feb 19.
4
Determination of mammographic breast density using a deep convolutional neural network.
Br J Radiol. 2019 Jan;92(1093):20180691. doi: 10.1259/bjr.20180691. Epub 2018 Oct 1.
5
Deep learning modeling using normal mammograms for predicting breast cancer risk.
Med Phys. 2020 Jan;47(1):110-118. doi: 10.1002/mp.13886. Epub 2019 Nov 19.
8
A new automated method to evaluate 2D mammographic breast density according to BI-RADS® Atlas Fifth Edition recommendations.
Eur Radiol. 2019 Jul;29(7):3830-3838. doi: 10.1007/s00330-019-06016-y. Epub 2019 Feb 15.

引用本文的文献

3
A Review of Artificial Intelligence in Breast Imaging.
Tomography. 2024 May 9;10(5):705-726. doi: 10.3390/tomography10050055.
5
Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review.
Breast Cancer Res. 2022 Feb 20;24(1):14. doi: 10.1186/s13058-022-01509-z.
6
Deep Learning: a Promising Method for Histological Class Prediction of Breast Tumors in Mammography.
J Digit Imaging. 2021 Oct;34(5):1190-1198. doi: 10.1007/s10278-021-00508-4. Epub 2021 Sep 10.
7
Artificial Intelligence in Medical Imaging of the Breast.
Front Oncol. 2021 Jul 22;11:600557. doi: 10.3389/fonc.2021.600557. eCollection 2021.
8
Deep Learning-Based Artificial Intelligence for Mammography.
Korean J Radiol. 2021 Aug;22(8):1225-1239. doi: 10.3348/kjr.2020.1210. Epub 2021 May 4.
9
The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review.
Front Robot AI. 2019 Apr 16;6:24. doi: 10.3389/frobt.2019.00024. eCollection 2019.
10
Fully Automated Breast Density Segmentation and Classification Using Deep Learning.
Diagnostics (Basel). 2020 Nov 23;10(11):988. doi: 10.3390/diagnostics10110988.

本文引用的文献

2
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
IEEE Trans Med Imaging. 2016 May;35(5):1322-1331. doi: 10.1109/TMI.2016.2532122. Epub 2016 Feb 18.
3
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.
4
A CNN Regression Approach for Real-Time 2D/3D Registration.
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.
5
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
6
Mammographic density-a review on the current understanding of its association with breast cancer.
Breast Cancer Res Treat. 2014 Apr;144(3):479-502. doi: 10.1007/s10549-014-2901-2. Epub 2014 Mar 11.
8
Applications and literature review of the BI-RADS classification.
Eur Radiol. 2005 May;15(5):1027-36. doi: 10.1007/s00330-004-2593-9. Epub 2005 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验