Suppr超能文献

紫外线C辐照的覆盖规划:基于群体智能算法的机器人表面消毒

Coverage Planning for UVC Irradiation: Robot Surface Disinfection Based on Swarm Intelligence Algorithm.

作者信息

Guo Peiyao, Luo Dekun, Wu Yizhen, He Sheng, Deng Jianyu, Yao Huilu, Sun Wenhong, Zhang Jicai

机构信息

Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China.

School of Electrical Engineering, Guangxi University, Nanning 530004, China.

出版信息

Sensors (Basel). 2024 May 26;24(11):3418. doi: 10.3390/s24113418.

Abstract

Ultraviolet (UV) radiation has been widely utilized as a disinfection strategy to effectively eliminate various pathogens. The disinfection task achieves complete coverage of object surfaces by planning the motion trajectory of autonomous mobile robots and the UVC irradiation strategy. This introduces an additional layer of complexity to path planning, as every point on the surface of the object must receive a certain dose of irradiation. Nevertheless, the considerable dosage required for virus inactivation often leads to substantial energy consumption and dose redundancy in disinfection tasks, presenting challenges for the implementation of robots in large-scale environments. Optimizing energy consumption of light sources has become a primary concern in disinfection planning, particularly in large-scale settings. Addressing the inefficiencies associated with dosage redundancy, this study proposes a dose coverage planning framework, utilizing MOPSO to solve the multi-objective optimization model for planning UVC dose coverage. Diverging from conventional path planning methodologies, our approach prioritizes the intrinsic characteristics of dose accumulation, integrating a UVC light efficiency factor to mitigate dose redundancy with the aim of reducing energy expenditure and enhancing the efficiency of robotic disinfection. Empirical trials conducted with autonomous disinfecting robots in real-world settings have corroborated the efficacy of this model in deactivating viruses.

摘要

紫外线(UV)辐射已被广泛用作一种消毒策略,以有效消除各种病原体。通过规划自主移动机器人的运动轨迹和UVC照射策略,消毒任务可实现对物体表面的全面覆盖。这给路径规划带来了额外的复杂性,因为物体表面的每个点都必须接受一定剂量的照射。然而,病毒灭活所需的相当大剂量往往导致消毒任务中的大量能量消耗和剂量冗余,这给机器人在大规模环境中的应用带来了挑战。优化光源的能量消耗已成为消毒规划中的首要关注点,特别是在大规模环境中。为了解决与剂量冗余相关的低效率问题,本研究提出了一种剂量覆盖规划框架,利用多目标粒子群优化算法(MOPSO)来求解用于规划UVC剂量覆盖的多目标优化模型。与传统路径规划方法不同,我们的方法优先考虑剂量积累的内在特性,引入UVC光效率因子以减轻剂量冗余,旨在减少能源消耗并提高机器人消毒的效率。在实际环境中使用自主消毒机器人进行的实证试验证实了该模型在灭活病毒方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验