Suppr超能文献

基于可学习提示向量的无人机图像灭火水射流轨迹检测

Firefighting Water Jet Trajectory Detection from Unmanned Aerial Vehicle Imagery Using Learnable Prompt Vectors.

作者信息

Cheng Hengyu, Zhu Jinsong, Wang Sining, Yan Ke, Wang Haojie

机构信息

School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China.

China Academy of Safety Science and Technology, Beijing 100012, China.

出版信息

Sensors (Basel). 2024 May 31;24(11):3553. doi: 10.3390/s24113553.

Abstract

This research presents an innovative methodology aimed at monitoring jet trajectory during the jetting process using imagery captured by unmanned aerial vehicles (UAVs). This approach seamlessly integrates UAV imagery with an offline learnable prompt vector module (OPVM) to enhance trajectory monitoring accuracy and stability. By leveraging a high-resolution camera mounted on a UAV, image enhancement is proposed to solve the problem of geometric and photometric distortion in jet trajectory images, and the Faster R-CNN network is deployed to detect objects within the images and precisely identify the jet trajectory within the video stream. Subsequently, the offline learnable prompt vector module is incorporated to further refine trajectory predictions, thereby improving monitoring accuracy and stability. In particular, the offline learnable prompt vector module not only learns the visual characteristics of jet trajectory but also incorporates their textual features, thus adopting a bimodal approach to trajectory analysis. Additionally, OPVM is trained offline, thereby minimizing additional memory and computational resource requirements. Experimental findings underscore the method's remarkable precision of 95.4% and efficiency in monitoring jet trajectory, thereby laying a solid foundation for advancements in trajectory detection and tracking. This methodology holds significant potential for application in firefighting systems and industrial processes, offering a robust framework to address dynamic trajectory monitoring challenges and augment computer vision capabilities in practical scenarios.

摘要

本研究提出了一种创新方法,旨在利用无人机(UAV)拍摄的图像监测喷射过程中的喷射轨迹。该方法将无人机图像与离线可学习提示向量模块(OPVM)无缝集成,以提高轨迹监测的准确性和稳定性。通过利用安装在无人机上的高分辨率相机,提出了图像增强方法来解决喷射轨迹图像中的几何和光度失真问题,并部署了Faster R-CNN网络来检测图像中的物体并精确识别视频流中的喷射轨迹。随后,引入离线可学习提示向量模块以进一步优化轨迹预测,从而提高监测的准确性和稳定性。特别是,离线可学习提示向量模块不仅学习喷射轨迹的视觉特征,还纳入其文本特征,从而采用双峰方法进行轨迹分析。此外,OPVM是离线训练的,从而将额外的内存和计算资源需求降至最低。实验结果强调了该方法在监测喷射轨迹方面具有95.4%的显著精度和效率,从而为轨迹检测和跟踪的进展奠定了坚实基础。这种方法在消防系统和工业过程中具有巨大的应用潜力,为应对动态轨迹监测挑战提供了一个强大的框架,并增强了实际场景中的计算机视觉能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8661/11175223/4222481cec9f/sensors-24-03553-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验